2407.11024v5 [csAl] 10 Nov 2024

arxXiv

A mathematical framework of
intelligence and consciousness based on
Riemannian Geometry

Meng Lu

Peking University

menglu@pku.edu.cn

Abstract

Understanding intelligence is a central pursuit in neuroscience, cognitive science,
and artificial intelligence. Intelligence encompasses learning, problem-solving,
creativity, and even consciousness. Recent advancements in geometric analysis
have revealed new insights into high-dimensional information representation and
organisation, exposing intrinsic data structures and dynamic processes within
neural and artificial systems. However, a comprehensive framework that unifies
the static and dynamic aspects of intelligence is still lacking. This manuscript
proposes a mathematical framework based on Riemannian geometry to describe
the structure and dynamics of intelligence and consciousness. Intelligence ele-
ments are conceptualised as tokens embedded in a high-dimensional space. The
learned token embeddings capture the interconnections of tokens across vari-
ous scenarios and tasks, forming manifolds in the intelligence space. Thought
flow is depicted as the sequential activation of tokens along geodesics within
these manifolds. During the navigation of geodesics, consciousness, as a self-
referential process, perceives the thought flow, evaluates it against predictions,
and provides feedback through prediction errors, adjusting the geodesic: non-
zero prediction errors, such as learning, lead to the restructuring of the curved
manifolds, thus changing the geodesic of thought flow. This dynamic interac-
tion integrates new information, evolves the geometry and facilitates learning.
The geometry of intelligence guides consciousness, and consciousness structures
the geometry of intelligence. By integrating geometric concepts, this proposed
theory offers a unified, mathematically framework for describing the structure
and dynamics of intelligence and consciousness. Applicable to biological and
artificial intelligence, this framework may pave the way for future research and
empirical validation.



Introduction

Understanding intelligence, both in humans and artificial systems, has been a
central pursuit in various fields including neuroscience, cognitive science, and ar-
tificial intelligence. Intelligence encompasses a wide range of cognitive abilities
such as learning, problem-solving, creativity, and adaptation. These abilities
are fundamental to how organisms interact with their environment, process in-
formation, and make decisions. In recent years, the geometric and topological
tools have been developed and utilised to analyse the geometry of the high di-
mensional representation. These advancements have led to new insights into
how information is processed and represented in neural and artificial systems
(Hensel et al., 2021; Chung and Abbott 2021).

Researchers have used latent spaces to create low-dimensional representa-
tions of data manifolds, revealing their underlying geometrical structures (Reif
et al., 2019; Marks and Tegmark 2023). Deep generative models like VAEs
(Variational Autoencoders, Kingma and Welling, 2013) and GANs (Genera-
tive Adversarial Networks) have shown that these latent spaces can capture
the curvature of learned manifolds, providing insights into intrinsic data struc-
tures (Arvanitidis et al., 2021; Chadebec and Allassonniere 2022). Additionally,
algorithms for computing geodesic curves and parallel translation of tangent
vectors allow for an intrinsic notion of distance and efficient navigation within
these manifolds (Acosta et al., 2022). However, these models primarily describe
the static data structure and lack mechanisms to account for the dynamics of
how the latent space evolves over time. Another set of generative models, such
as GPTs (Generative Pre-trained Transformers), utilise attention mechanisms
to accumulate contextual information and autoregression to generate token se-
quences, which can be regarded as thought flow. This approach represents the
dynamic aspect of intelligence. However, these models do not have an explicitly
defined latent space in the same way that VAEs (Variational Autoencoders) and
GANs (Generative Adversarial Networks) do. Consequently, the organisation
and connections of knowledge or features within these models remain unclear.

In parallel with the advancement of geometric analysis in Al, the geomet-
ric representation of neural activities has been observed to efficiently encode
behavioural variables and predict outcomes (DiCarlo and Cox 2007; Gao and
Ganguli 2015; Vyas et al., 2020) by a variety of new tools and methods based on
geometry (Jolliffe 1986; Tenenbaum et al., 2000; Roweis and Saul, 2000; Hinton
and Roweis 2002; Mclnnes et al., 2018; Chaudhuri et al., 2019). For example,
the hippocampus has been shown to encode both spatial and abstract variables
within neural manifolds, serving as a common organising principle for storing
declarative memory and generating cognitive maps (Dmitriy et al., 2017; Nieh
et al., 2020). Apart from this, geometric representation has also been used in
sensory recognition (Kobak et al., 2019; Okazawa et al., 2021; Stringer et al.,
2019), motor control (Gallego et al., 2017) and decision making such as bayesian
inference (Sohn et al., 2019). These studies highlight how geometric structures



in the brain can facilitate decision-making and predictive coding through effi-
cient integration of spatial and abstract information.

Building on the advancements in geometric analysis for both artificial and
human intelligence, it is compelling to explore a general theory based on ge-
ometry (Lei et al., 2020; Bronstein et al., 2021; Ma et al., 2021) to describe
the structure and dynamics of intelligence representation. This raises a few key
questions: 1) If such a theory exists, what is the general form for rep-
resenting information or features as elements within this framework,
and what is their structure? 2) Under this representation and struc-
ture, what are the dynamics of the thought flow navigating within
the structures formed by these representations? 3) Additionally, how
does the structure of feature representation interact with the dynamic
thought flow? These questions highlight the need for a unified framework that
encompasses both the static and dynamic aspects of intelligence, bridging the
gap between information representation and cognitive processes.

A general theory of intelligence should encapsulate a range of properties
emergent from intelligence, including learning, imagination, creative thinking,
problem-solving, and the pinnacle of the intelligence hierarchy—consciousness.
Consciousness, as an emergent property of complex cognitive processes (Seth
and Bayne 2022), rests on the brain’s ability to sustain complex dynamics of
constantly changing activity and connectivity between brain regions (Dehaene
and Changeux, 2011; Hutchison et al., 2013; Barttfeld et al., 2015; Demertzi et
al., 2019), indicating that consciousness influences and is influenced by the un-
derlying structure of intelligence. Therefore, it is a necessary component of this
general theory and can only be adequately explained and formulated within the
comprehensive framework of intelligence. Understanding consciousness within
this framework would provide a holistic view of how thought processes evolve
and adapt, while explaining intelligence in the context of consciousness high-
lights the dynamic and self-referential nature of cognitive functions.

The author here proposes a theory of the geometry of intelligence that aims
at addressing these questions via a comprehensive mathematical framework that
describes the structure and dynamics of intelligence. This theory conceptualises
elements of intelligence as tokens embedded in a high-dimensional space of intel-
ligence, forming manifolds with geometric properties such as curvature. These
manifolds capture both the static feature distributions and dynamic sequences
of activation, reflecting the complexity and interconnections within cognitive
processes. In the dynamics of intelligence and consciousness, sequential token
activation forms thought flow, moving along manifold geodesics. The direc-
tion of this sequence, the tangent vector of this geodesic, is determined by the
manifold’s intrinsic geometry in terms of Riemannian geometry. Cognitively,
the direction of thought flow is guided by contextual information from past to-
kens. Consciousness perceives and evaluates thought flow, providing feedback
via prediction errors. When prediction error is zero, navigation follows the



manifold’s structure as a geodesic, representing free thought flow state with no
consciousness perturbation. Typically, non-zero prediction errors and external
input reflect the process of accepting new information and integrating it into the
existing manifold, thereby evolving the intelligence space, representing process
such as learning.

In summary, the geometry of intelligence guides how the consciousness nav-
igate, the consciousness dictates how the geometry of intelligence evolves. By
integrating geometric and topological concepts, this theory offers a novel and
mathematically rigorous framework to describe the structure and dynamics of
intelligence and consciousness, for both biological and machinery intelligence,
paving the way for future research and empirical validation.

Background of Riemannian Geometry

Riemannian geometry is a branch of differential geometry that studies smooth
manifolds equipped with a Riemannian metric. This metric allows for the def-
inition of various geometric concepts such as distances, angles, and curvatures
on the manifold.

Manifold and Curvature

A manifold M is a topological space that locally resembles Euclidean space and
is equipped with a smooth structure. The curvature of a Riemannian manifold
is a measure of how much the manifold deviates from being flat. It is quantified
using the Riemann curvature tensor R .

Metric Tensor

The local geometry of a Riemannian manifold is defined by the metric tensor g,,,..
This tensor provides a way to measure distances and angles on the manifold.
The components of the metric tensor in local coordinates are given by:
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where z* and z¥ are local coordinates on the manifold, and g,g is the metric
tensor in a different coordinate system.

Christoffel Symbols

The Christoffel symbols I'!, are derived from the metric tensor and represent
the connection coefficients:
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Curvature Tensor

The Riemann curvature tensor R, is a measure of the manifold’s curvature:

A A
R, = (‘%Fﬁa - aVPZa + FZAFVU - Fﬁ)xrlw

o pY

Geodesic Equation

The geodesic equation describes the evolution of a point moving along the man-
ifold. The coordinates " (t) describe the position of the point on the manifold
as a function of the parameter ¢, which could represent time or another affine
parameter. The geodesic equation is given by:

dt? vAdt dt
This equation ensures that the path +(t) is locally the shortest path between
points on the manifold, accounting for the curvature defined by the Christoffel
symbols.

Geometry of Intelligence

1 Tokens, embedding and manifold

Tokens, as discrete units, effectively represent various types of information, such
as words in a sentence or pixels in an image, capturing complex data in a man-
ageable form. High-dimensional spaces capture intricate relationships between
data points, with each dimension representing a different attribute, enabling rich
and detailed representations. These spaces facilitate learning and representing
underlying data manifolds, crucial for understanding data structure and tasks
like interpolation and extrapolation. High-dimensional spaces also separate data
points that are close in lower dimensions, aiding in classification, clustering, and
retrieval.

Advances in multi-modal models like Visual-Language Models (VLMs) such
as CLIP (Contrastive Language-Image Pre-training) (Radford et al., 2021) inte-
grate visual and textual information into a unified embedding space, showcasing
the feasibility of a common space for embedding diverse data types. This in-
tegration highlights the power of high-dimensional token spaces in capturing
complex, multi-modal relationships, enhancing understanding and generation
tasks across various domains, and advancing both artificial and human-like in-
telligence.

Tokens are transformed into high-dimensional embeddings, which reside on
manifolds capturing the data’s underlying structure. The curvature of these
manifolds reveals important characteristics about the data distribution, influ-
encing model performance. This geometric perspective provides deep insights



into data relationships and guides the development of robust and efficient ma-
chine learning models.

Mathematically, let a token ¢; be represented as a point in a high-dimensional
space:
t; € Rd

where d is the dimensionality of the space.
The embedding of token ¢; is given by:

v = ¢(t;)

where ¢ is a function mapping the token to its embedding in the high-dimensional
space.

The collection of all embeddings forms a manifold M within this high-
dimensional space. The dimension of the manifold, denoted as dim(M), is
typically much lower than d, capturing the intrinsic structure of the data:

dim(M) <« d

2 Thought flow and Geodesic

Concept: In cognitive science, we propose that without perturbation or ex-
ternal stimulation, the thought flow navigates naturally on curved manifolds,
following the geometry of the space. This unperturbed path satisfies the def-
inition of a geodesic. In this context, the geodesic path is represented as a
sequence of tokens activated along this path, reflecting the natural trajectory of
thought flow in the high-dimensional token space. The perturbed thought
flow that is ”forced” by stimuli or external input to deviate from its
geodesic, and is the most common scenario, will be analysed in the
later section of the Consciousness. The geodesic is the path that minimises
the distance between points, analogous to the shortest path on a curved surface.
In this theory, the geodesic «(t) represents the state of intelligence at time .

Mathematical Representation in cognitive aspect:

’y(t)Z{v,l,fUé,...,U;} (1)

~(t) here is represented as a sequence of sampled embeddings {v],v5,..., v }.
v} is a sampled embedding from the distribution of the corresponding token ¢;:

V)~ N (v, 50) (2)

- v; is the mean embedding. - 3; is the covariance matrix representing the vari-
ability around v;.



Sampling from the distribution N (v;, ¥;) rather than using a specific vector
v; allows the model to capture the inherent variability and uncertainty associ-
ated with each token. This approach ensures that the model generalises better
to new, unseen data by reflecting the natural noise and variations present in
real-world information. It also makes the geodesic path more robust to out-
liers, providing a more stable and reliable thought flow. Random sampling
promotes exploration within the high-dimensional space, which can lead to dis-
covering new and potentially better paths, similar to the use of randomness in
transformers through techniques like top-k sampling and temperature scaling to
introduce variability and flexibility in generating sequences.

By incorporating randomness through sampling, the model better mimics
human cognitive processes, which are inherently probabilistic and uncertain.
This stochastic approach allows the application of probabilistic methods for
analysing and optimising the geodesic paths, leading to more accurate, robust,
and adaptable representations of intelligence. Integrating these elements into
the geometric framework of intelligence provides a comprehensive understanding
of how complex cognitive processes are structured and evolve over time.

3 Tangent Vector and State Transition Function

Concept: The tangent vector at the moving front of the geodesic represents the
direction and rate of change of the thought flow at that point. The differentia-
tion of the geodesic function represents the state transition function, describing
how the state of intelligence evolves over time.

Mathematical Representation:

dy (1)
v(t) = ——= 3
=" 3
where v(¢) is now a sequence of sampled embeddings {v{, v}, ..., v, }.
Here, the geodesic v(t) = {v], v}, ..., v),} represents a continuous and smooth

path composed of connected points, or tokens, within a smooth manifold. This
smooth structure ensures that functions defined on it, including ~(t), are con-
tinuous and differentiable.

The geodesic 7(t) models the trajectory of thought flow, implying grad-
ual transitions between tokens without abrupt jumps. The tangent vector
u(t) = dzl—f) represents the derivative of this path with respect to time, pro-
viding a rigorous mathematical description of the rate of change of the thought
flow. This differentiation is grounded in the manifold’s smoothness, allowing for
well-defined tangent vectors that capture the instantaneous direction and speed

of movement along the geodesic. Thus, v(t) characterises the dynamic state of



the system at any given time.

By treating the geodesic as a smooth path on a smooth manifold, we en-
sure mathematical rigor, applying differential geometry to model the continuous
evolution of intelligence. This framework enables a precise description of token
evolution over time, with v(¢) encapsulating both the state and transition dy-
namics within the high-dimensional space of intelligence.

4 Attention Mechanism

Concept: The attention mechanism computes the relevance of each token in
the sequence with respect to the current token, determining how contextual in-
formation influences the next token.

Mathematical Representation:
aij = A(vj, vj) (4)
where «;; are the attention weights, and A is a general attention function that
measures the relevance of token j to token i.

The curvature and structure of the manifolds are results of the training
process, capturing the intrinsic links, organisation, and distribution of tokens.
The attention mechanism measures the contextual significance and tokens’ cor-
relation, which is geometrically represented by the manifold’s curvature and
structure. This creates a fundamental link between the attention mechanism
and the tangent vector. In mathematical terms, while the tangent vector pro-
vides a local derivative (instantaneous change), the attention mechanism offers
a global perspective by integrating the influence of prior tokens. This integrated
influence aligns with the geodesic’s learned curvatures, as both are products of
the underlying manifold’s geometry.

5 Context Vector and Contextual Embedding

Concept: The context vector is a weighted sum of the value vectors, determined
by the attention weights. It represents the aggregated contextual information
for a given token.

Mathematical Representation:

¢ = Zaij(Wwv;-) (5)

Here, c; is the context vector for token ¢;, o;; are the attention weights, and
Ww is the learned value matrix.



6 Predicted Token

Concept: The predicted token concept is derived from the context vector. It
represents the next token in the thought flow, influenced by the contextual
information.

This concept can be expressed mathematically by two different equations:

I. Contextual Representation:

g9(t) = o(Wec(t) + bg) (6)

where o is the activation function, W¢ is a weight matrix, ¢(¢) is the context
vector at time t, and b¢ is a bias term.

I1. Geometric Representation
The geometric representation of the predicted token is given by:

t
o(t) = / o(t) dt + g(t — At)
t—At

where v(t) represents the incremental change over time, and g(t — At) is the
previous state of the token.

In these equations, g(t) captures the essence of the predicted token by com-
bining the immediate context with the temporal evolution of the thought flow.
The integral component in the second equation signifies the accumulation of
changes over time, reflecting the dynamic nature of thought processes.

Weight Matrix W,

The weight matrix Wy and bias vector by perform a linear transformation on
the context vector ¢(t). This transformation adjusts the integrated information
in ¢(t) to a new representation that can be used to predict the next token.
It helps in mapping the high-dimensional context vector to the appropriate
dimensional space of the next token. In human cognition, this can be likened to
how the brain integrates various pieces of information and then transforms this
integrated information into a specific thought or action. The weights and biases
represent how different aspects of the accumulated knowledge are emphasized
or de-emphasized in forming the next step in the thought process.

Non-linear Activation Function (o)

The activation function o (such as ReLU or tanh) introduces non-linearity into
the model. Non-linearity is crucial for capturing complex relationships between
tokens. Without non-linearity, the model would be limited to linear mappings,
which cannot effectively represent the intricacies of thought processes. In hu-
man cognition, non-linear processing allows for the flexibility and complexity



required in thinking, decision-making, and creativity. It allows the brain to
process information in a way that is not simply additive or subtractive but can
involve more complex interactions.

While the specific formulation provided is inspired by machine learning mod-
els like Transformers, the concepts of linear transformation and non-linear acti-
vation are fundamental to both human and machine intelligence.

Human Intelligence

In the human brain, neurons process inputs through synaptic weights (analogous
to Wy) and biases, and the non-linear activation is similar to the way neurons
fire based on a threshold. This enables the brain to perform complex cognitive
tasks by integrating and transforming information in sophisticated ways.

Machine Intelligence

In artificial neural networks, linear transformations and non-linear activations
enable the model to learn and represent complex patterns in data. These prin-
ciples are essential for building models that can generalise from training data
to make accurate predictions or decisions.

7 Consciousness

Consciousness emerges from intelligence through a series of complex cognitive
processes, including internal monitoring, self-reflection, and adaptive behaviour.
The interplay between consciousness and intelligence is characterised by the en-
hancement of cognitive functions such as perception, learning, memory, and
attention, facilitated by self-awareness. Advanced forms of intelligence enable
the development of consciousness, which, in turn, augments the capabilities of
intelligent systems.

Mathematically, consciousness can be conceptualised as a self-referential vec-
tor, representing a state that continuously references and updates itself based on
both internal and external inputs. This self-referential nature involves the sys-
tem perceiving itself, evaluating predictions, and providing feedback to itself,
thereby influencing subsequent cognitive states or tokens. For an intelligent
agent, there is no discrete external input; instead, all stimuli must be integrated
into the consciousness to be perceived effectively. Consequently, the perception
within consciousness is the integration of the internal thought flow and external
input, enabling a dynamic and holistic influence on the cognitive processes that
underpin intelligent behaviour. This integrative process ensures that conscious-
ness remains a cohesive and adaptive system, capable of responding to complex

10



and evolving environments.

To analyse consciousness further, we can break it down into three fundamen-
tal steps and model each step as a function of time ¢, representing the system’s
internal state. These steps constitute a complete cycle of consciousness, includ-
ing perception, evaluation, and feedback. The transition of state from ¢ to t+ At
is used to represent this entire cycle shown as below:

t t+At

Evaluation
f(t)-g(t)

Evaluation
f(t+At)-g(t+At)

Perception
f(t)

Prediction Prediction
g(t) g(t+t)

Perception
flt+at)
External input
I(t+At)

Figure 1: The flow chart illustrates the transition of consciousness cycle at t to
the next cycle at t+At: perception, prediction, evaluation, and adjustment. The
left side represents the process at time ¢, where external input I(¢) is integrated
with prediction g(¢) to obtain the perception f(t). The evaluation f(t) — g(t) is
used to adjust the thought flow. The right side represents the process at time
t + At, showing the continuous loop of feedback and adaptation.

Adjustment
At)

Adjustment
A(t+At)

External input

I(t)

e Perception:The process by which sensory information is received and
interpreted, modelled as a function of external stimuli and the current
state. Perception integrates the internal thought flow and external input
at time ¢ to form the current state f(t).

e Evaluation: The assessment of perceived information, including its emo-
tional, cognitive, and contextual significance. This is modelled as the
comparison between the current state f(¢) and the predicted state g(¢),
resulting in the prediction error A(t) = f(t) — g(t).

e Feedback: The system’s response to the evaluation, influencing future
perceptions, evaluations, and the overall state of consciousness. The feed-
back function ¥ (A(t)) adjusts the trajectory of the thought flow based on
the prediction error, ensuring continuous adaptation and learning.
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This cycle of perception, evaluation, and feedback ensures that conscious-
ness remains a cohesive and adaptive system, capable of responding to complex
and evolving environments. The transition from ¢ to ¢t + At represents one com-
plete cycle of consciousness update, allowing for dynamic adjustments and the
integration of new information into the system.

7.1 Perception (Front Token)

Concept: The front token is the current focus of the thought flow, representing
the token that is being actively processed or considered at a given time.

Mathematically, we can express the front token f(¢) as a function that cap-
tures the integration of internal thought flow and external input through the
process of perception. The front token that is simply the position on the geodesic
at time ¢ can then be modelled as:

f() = P(y(t),I(t)) (8)
where v(t) is the internal thought flow at time ¢, and I(t) is the input at

time t.

7.2 Evaluation

Concept: The prediction error is the difference between the front token and
the predicted token. It measures the accuracy of the prediction, considering the
capacities of perception, evaluation, and feedback.

Mathematical Representation
A(t) = f(t) —g(t) 9)

7.3 Feedback Function

Concept: The feedback function adjusts the trajectory of the thought flow
based on the prediction error. It helps in correcting the thought flow to im-
prove future predictions.

Mathematical Representation:

V(A(t)) (10)

Here, 1 is the feedback function that takes the prediction error as input and
outputs the adjustment needed for the thought flow.
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8 Geodesic Equation with Feedback

Based on the above analysis, we now can argue that the thought flow in an
intelligent system can be modelled using the geodesic equation, which describes
the path that 1) is determined by the geometry of the curved manifolds
formed by token embeddings, 2) minimises the distance (or energy)
in the manifold formed by the token embeddings. The geodesic equa-
tion with feedback integrates the impact of consciousness by incorporating a
feedback mechanism that modulates the trajectory of the thought flow based
on prediction errors.

Mathematically, the geodesic equation with feedback is expressed as:

d>y4(t) dy" (t) dy(t) (A1)
re =K- 11
e @ ar T ae (1)
Here:
o dzg;(t) is the second derivative of the geodesic (acceleration).

e I'"\ are the Christoffel symbols representing the connection coefficients.

d? (AR (1)) - o .
® - —g= is the modulated second derivative of the feedback function
with respect to time.

Explanation:

e r is the consciousness intensity index applied as a modulator to the pre-
diction error. It represents the intensity with which the agent processes
the prediction error. A higher x indicates a more intense response to the
prediction error.

Unit Consistency Check-Left Side of the Equation: The left side of
the geodesic equation represents the acceleration along the geodesic, with v#(t)
being the position vector on the manifold:
d2;’;(t) is the second-order time derivative (acceleration) of the position
vector y*(t), having units of [L/T?] (length per time squared).

[ ]
e I'"\ are the Christoffel symbols, which are dimensionless since they are
derived from the metric tensor, representing the connection coefficients.

. % and % are first-order time derivatives (velocities), each having
units of [L/T] (length per time).

Thus, the left side has units of [L/7?] (length per time squared).

Unit Consistency Check-Right Side of the Equation: The right side
involves the feedback term modulated by the consciousness intensity index k:
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e AM(t) represents the prediction error, which should have units of [L]
(length), assuming it is measured as a positional deviation in the man-
ifold space.

e (AH(t)) is a function of the prediction error. To maintain unit consis-
tency, ¥(A*(t)) should also have units of [L] (length).

w is the second-order time derivative of ¥ (A#(t)), having units of
[L/T?] (length per time squared).

e x is a dimensionless modulating factor.

Thus, the right side has units of [L/T?] (length per time squared).

Zero Prediction Error: When the prediction error is zero, A¥(t) = 0, the

2 1
feedback term k - M vanishes. In this scenario, the geodesic equation

reduces to: “
P () | D) AV ()
a2 AT e @
This describes the natural geodesic path of the thought flow without any correc-
tion from prediction error feedback. The system follows its expected trajectory.

=0

Non-zero Prediction Error: When there is a non-zero prediction error,

AF(t) # 0, the feedback term - w becomes significant. In this scenario,

the geodesic equation incorporates the correction due to the prediction error:

Py(t) | e (O A | PUA)
dt2 VAL dt dt dt2

This modifies the trajectory of the thought flow, adjusting it based on the feed-
back from the prediction error. The system adapts its path as a result of the
"force” acting on it, reflecting a dynamic response to the discrepancies between
predicted and actual states.

9 Competitive Activation and Consciousness Thresh-
old

9.1 Competitive Process

Concept: Multiple thought flows, generated by sampling from token distri-
butions, compete based on their attention-derived scores. The flow with the
highest score becomes part of the conscious experience.

Mathematical Representation:

Score(Thought Flow;) = f({v;(t)}) (12)

where ;(t) is the contextual embedding of the j-th thought flow at time ¢.
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9.2 Consciousness Threshold

Concept: The sequence with the highest score surpasses the consciousness
threshold and becomes part of the conscious flow.
Mathematical Representation:

Conscious Flow = Thought Flow; if Score(Thought Flow;) > ¢ (13)

Cognitive Science Aspect: This competitive activation process mimics
how human intelligence prioritises various thought processes. This concept is
supported by earlier work suggesting that conscious awareness results from a
competitive process where different cognitive inputs vie for limited attentional
resources (Baars, 1988; Dehaene et al., 2001). Experimental studies have ev-
idenced neural mechanisms of selective attention, demonstrating how stimuli
compete for neural representation (Treue and Trujillo, 1999; Ruff and Driver,
2021). In the human brain, multiple streams of thought and potential actions
are continually evaluated, with the most relevant or urgent thoughts reaching
conscious awareness. This selective attention mechanism ensures the brain fo-
cuses on critical information, optimising cognitive resources and decision-making
processes.

Mathematical Aspect: From a mathematical perspective, introducing
competitive activation and consciousness thresholds helps to refine the model’s
efficiency and accuracy. By evaluating and selecting the thought flow with the
highest score, the model can effectively prioritise the most relevant information,
reducing noise and improving the robustness of predictions. This mechanism
also introduces a layer of non-linearity and complexity that enhances the model’s
ability to simulate advanced cognitive processes, leading to the construction of
more sophisticated AT models.

Summary and discussion

Derivation of the Geometry Theory of Intelligence

By representing thought flow as a geodesic in a high-dimensional space and
incorporating mechanisms for perception, prediction, feedback, and random ac-
tivation via token distributions, this theory provides a robust framework for
modeling the structure and dynamics of intelligence. The mathematical formu-
lations capture the continuous evolution of thought and the impact of contextual
information, feedback, and randomness on this process.

The logical chain of deriving the theory of the geometry of intelligence be-
gins with conceptualising elements of intelligence as tokens embedded in a high-
dimensional space (Bjerke et al., 2023), which is grounded on the neuronal
essemble as token and manifold, as well as token embedding in NLP and LLM.
Each token represents discrete units of information. These tokens form mani-
folds, capturing both the static feature distributions and the dynamic sequences
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of activation. The curvature of these manifolds represents the organisation of to-
kens and the complexity of cognitive processes. Within this manifold, geodesics
represent the natural and unperturbed paths of thought flow. The sequence of
token activations follows these geodesic paths. Non-zero prediction error and
input act as forces that deviate the thought flow from its native geodesic path
to a new path. The result is the evolution of the geometry of the intelligence
space, with token repositioning, curvature restructuring, new connection forma-
tion, and other changes. This formulates the learning process, as discussed later.

Comparison with the Working Mechanisms of Generative
Models

Given this theoretical foundation, it is crucial to compare this general framework
of intelligence with the current state-of-the-art (SOTA) generative models. The
SOTA generative models, such as VAEs, GANs, and transformer-based LLMs,
represent the most advanced state of machine intelligence, often mimicking or
even surpassing certain aspects of human intelligence, such as GPT-4 (Achiam
et al., 2023) in general and Alphafold3 (Abramson et al., 2024) in specific task.
These models may capture the essence of intelligence, including its principles
and mechanisms, and provide insights into how complex cognitive processes can
be modelled (Yang et al., 2024). Additionally, analysing human intelligence or
brain function as a generative model (Friston and Price 2001; Spens and Burgess
2024) allows us to draw parallels between biological and artificial systems. By
understanding these parallels, we can better appreciate the underlying structure
and dynamics of intelligence in both realms, thereby enhancing our theoretical
framework.

Pre-transformer generative models (VAEs and GANSs) use a static, low-
dimensional latent space to represent data, with geodesics serving to under-
stand intrinsic distances and enable smooth interpolations on the data manifold
(Bronstein et al., 2021; Chadebec and Allassonniere 2022; Acosta et al., 2023).
Transformer-based models focus on dynamic token sequences without an ex-
plicit latent space, utilising attention mechanisms to determine the importance
of input parts, where geodesics represent optimal sequences of token activations
for coherent output generation.

The tokens (Radford et al., 2021; Lyu et al., 2023) with geometric repre-
sentation forms manifolds that capture both the static distribution of features
and the dynamic sequences of activation. The curvature of these manifolds re-
flects the complexity and interconnections within the cognitive processes. The
static aspect of the theory encompasses the organisation of tokens based on
their features, similar to the learned manifolds in VAEs and GANs, providing a
foundational structure that captures the intrinsic relationships between differ-
ent elements of intelligence.
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Beyond static organisation, the dynamic sequences of token activation are
crucial. Geodesics in this context represent the efficient pathways through which
cognitive processes unfold over time. These sequences are learned during train-
ing and reflect the optimal transitions between different states of intelligence.

Integrating insights from both static and dynamic representations, the cur-
rent theory benefits from the understanding of static feature representations
provided by VAEs and GANs, extending the concept of a manifold to include
dynamic interactions between tokens. The dynamic perspective offered by trans-
former models is crucial for modelling the temporal aspect of intelligence.

Interplay between token embeddings, curvature and geodesic

The recent study on Claude 3 Sonnet (Templeton et al., 2024) provides valuable
insights that can be seamlessly integrated into the theory of the geometry of in-
telligence. In this context, tokens are the fundamental units in the intelligence
space, forming a manifold whose curvature determines the geodesic paths of
thought flow. To fully leverage the findings from Claude 3 Sonnet, it is essential
to elucidate the relationship between features and tokens and demonstrate how
features can be represented by tokens within this theoretical framework.

Tokens, in this theory, are discrete units of information, such as words or
images, embedded in a high-dimensional space to form points ¢;. These embed-
dings v; = ¢(t;) capture complex relationships and intrinsic structures, forming
a manifold M. Features, on the other hand, are higher-level abstractions or
patterns emerging from the interaction of multiple tokens. A feature could rep-
resent a concept like ” Golden Gate Bridge,” recognized through specific patterns
in the embeddings of related tokens.

To bridge the gap between features and tokens, we can consider features as
emergent properties arising from the combined activations of multiple tokens.
A feature F' can be represented as a function of multiple token embeddings:

F:f(’Ul,’UQ,...,'Un)

This function f might be a weighted sum, convolution, or another aggregation
mechanism capturing the interaction between tokens to form the feature. Each
token embedding v; contributes to the feature’s representation, and the feature’s
location in the high-dimensional space can be viewed as a region influenced by
these tokens.

The curvature of the manifold M reflects how token embeddings are organ-
ised. Features represent regions of high curvature where specific patterns or
concepts are densely represented. Manipulating features effectively changes the
manifold’s organization and curvature, altering the geodesic paths.

17



e Curvature: The curvature I'”', of the manifold is influenced by the distri-
bution and interaction of token embeddings. Changes in feature activation
alter this curvature.

e Geodesics: Geodesic paths, representing natural thought flow, change
in response to feature manipulation, altering the trajectory through the
high-dimensional space.

In this theory, the tangent vector represents the direction and rate of change
of thought flow. The Claude 3 Sonnet study demonstrates that manipulating
features changes the model’s state transitions, aligning with changes in the
tangent vector.

e Tangent Vectors: Changes in the model’s responses when a feature is
manipulated correspond to changes in the tangent vector of thought flow.

e State Transition: New responses indicate a transition to different parts
of the manifold, driven by changes in curvature from feature manipulation.

Feedback mechanisms in this theory adjust the manifold’s structure based on
non-zero prediction errors and external inputs, facilitating learning and adapta-
tion. In Claude 3 Sonnet, feature manipulation by human/external input acts
as a force to adjust the model’s internal representations.

e Feedback: Manipulating features changes the model’s outputs, indicating
a feedback mechanism that adjusts token embeddings.

e Learning: This process can be viewed as a form of learning, evolving the
geometry of the intelligence space based on new inputs and feedback.

Using the mathematical framework of this theory, we can express the changes
observed in the Claude 3 Sonnet study as follows:

e Feature Representation:
F = Z wW;V;
i

Where w; are the weights determining each token embedding’s contribu-
tion to the feature F.

e Curvature and Geodesics: The curvature I'”', of the manifold is influ-
enced by these weighted embeddings. Manipulating a feature F' changes
the weights w;, thus altering the curvature and the geodesic paths ~(¢).

e Geodesic Equation:
P () e () ) | PYAH()
dt? A gt dt dt?

Changes in w; due to feature manipulation impact the Christoffel symbols
'\, thereby altering the geodesic paths ~(t).

(11)
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By representing features as aggregated representations of token embeddings,
we can integrate the concept of features within the theory of the geometry of
intelligence. Manipulating features in the Claude 3 Sonnet study alters the
embeddings and curvature of the manifold, changing the geodesic paths and
affecting the thought flow. This framework provides a comprehensive explana-
tion of how modifying features in AI models impacts their behavior, reflecting
the dynamic interplay between geometry and thought flow in both artificial and
biological intelligence.

Explaining the Advanced Functions and Properties of In-
telligence

The Geometry of ”Understanding”

Understanding is a crucial cognitive process that allows for the coherent as-
similation of new information, enabling smooth cognitive functioning and learn-
ing. In the context of our geometric framework, understanding involves the inte-
gration and stabilisation of new information within the manifold of intelligence.
By comprehending the geometry of ”understanding” and ”misunderstanding,”
we can enhance our training models, improve understanding, and address misun-
derstanding more effectively. In our framework based on Riemannian geometry,
these concepts are elucidated through token integration, geodesic navigation,
and curvature dynamics.

Tokens are discrete units of information embedded in a high-dimensional
space. Understanding occurs when new tokens are coherently integrated with
existing ones, leading to smooth and stable manifolds that ensure seamless in-
corporation of new information. Misunderstanding arises when new tokens are
poorly integrated, resulting in sparse or disconnected embeddings that form iso-
lated clusters lacking coherence, characterised by high curvature, singularities,
or undifferentiated regions, shown as Fig.2. This leads to unstable or erratic
geodesics, where the thought flow exhibits abrupt changes, indicating a lack of
coherence.

Curvature analysis can identify regions likely to represent poor under-
standing or misunderstanding, allowing us to target and improve them specif-
ically. In regions of misunderstanding, feedback loops fail to converge, leading
to constant flux. In contrast, understanding achieves stable feedback loops,
indicating well-integrated information. FErratic state transitions characterise
misunderstanding, while smooth transitions indicate understanding. Visualis-
ing the manifold with techniques like t-SNE (Van der Maaten and Hinton 2008)
or UMAP (Mclnnes et al., 2018) helps identify high-curvature, unstable regions
indicating misunderstanding. Monitoring prediction errors also highlights areas
needing further learning and integration.
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Figure 2: A simplified representation of manifolds in intelligence space. A.
In the intelligence space, tokens are coherently connected to form smooth and
stable manifolds. Some manifolds remain isolated, indicating that they are not
explainable by others. No geodesic paths exist between these isolated manifolds.
B. As learning progresses, the manifolds expand through the addition of new
tokens. Consequently, more manifolds become interconnected, forming larger
smooth and stable structures that facilitate longer and more complex geodesic
navigation along them.

After identifying regions of misunderstanding, we can specifically improve
them using various methods. Active learning can seek additional information to
integrate new tokens effectively. Strengthening feedback mechanisms can reduce
prediction errors, stabilising the thought flow. Reinforcing connections between
misunderstood and well-understood tokens leverages existing knowledge to fa-
cilitate better integration, converting misunderstanding into understanding.

By understanding and addressing misunderstanding in the geometric space,
targeted strategies can improve the integration and coherence of new informa-
tion, enhancing overall understanding. This approach ensures a robust and
adaptable intelligence framework capable of evolving and improving over time.

Imagination is the ability to form new ideas, images, or concepts not
present to the senses. Theories of imagination often emphasise its role in cre-
ative thinking and problem-solving, such as the notion of mental simulation,
where the mind constructs possible scenarios to predict outcomes (Comrie et
al., 2022; Hassabis and Maguire 2009; Schacter and Thakral 2024). In the
framework of the geometry of intelligence, imagination can be understood as
the activation of token sequences along geodesics that are not directly derived
from immediate sensory input but rather from the manifold of stored experiences
and abstract concepts. These imagined sequences «y(t) can traverse novel paths
in the high-dimensional space, allowing for the exploration of new ideas and
creative solutions. The ability to navigate and synthesise these novel pathways
showcases the flexibility and adaptability of the cognitive manifold in generating
imaginative thoughts.
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Learning and experience involve acquiring new knowledge or skills. Vari-
ous theories explain learning as the strengthening of synaptic connections (Heb-
bian learning) (Hebb 1949; Sumner et al., 2020; Magee and Grienberger 2020) or
the adaptation of cognitive structures (Piaget’s theory of cognitive development)
(Piaget 1953; Crone and Ridderinkhof 2011). In the geometry of intelligence,
learning is conceptualised as the evolution of the manifold’s structure through
evaluation and feedback. The geodesic equation with feedback and input up-
date:

Pyrt) . d A dPHAR()

T# = 11
dt? o dt dt & dt? (11)

describes how the trajectory of thought flow adapts based on prediction
errors. This adaptation, driven by the feedback function ¢(A(¢)) and input
function I(¢), results in the modification of the token embeddings and the man-
ifold’s curvature. Thus, geometry dictates how consciousness navigates,
while consciousness guides the evolution of geometry. This continuous
interplay between the geometric structure and the dynamics of thought flow en-
capsulates the essence of learning, where the intelligence state evolves to reflect
accumulated experiences and refined predictions. This relationship is exempli-
fied in the study on Claude 3 Sonnet, where manipulating features leads to
changes in the model’s behavior.

When a feature’s weight is amplified in Claude 3 Sonnet, it changes the
model’s geometric structure by altering the embeddings and their associations
with other tokens. This modification affects the Christoffel symbols (I', ), which
in turn alters the geodesic path of the thought flow. As a result, the model’s
responses (analogous to consciousness) change spontaneously, reflecting the new
geometric configuration. This process aligns with the current theory where ad-
justments in geometry (feature weights and embeddings) directly influence the
geodesic paths that consciousness follows, demonstrating the dynamic interplay
between geometry and consciousness.

Creative thinking is the process of generating new, original ideas and
solutions. It is often described as a recombination of existing knowledge in
novel ways, facilitated by divergent thinking and cognitive flexibility (Beaty et
al., 2016). In exisiting theories, creativity is linked to associative thinking and
the ability to connect disparate concepts (Vartanian and Kaufman 2013; Suck-
ling and Hoyer 2021). Within the geometry of intelligence, creative thinking
can be modelled as the traversal of geodesics that connect diverse and pre-
viously unlinked regions of the cognitive manifold. The attention mechanism
aij = A(vj,vj) plays a crucial role in dynamically weighting the relevance of
various tokens, enabling the formation of unique and contextually rich combi-
nations. By leveraging the manifold’s structure and dynamically exploring new
paths, the theory provides a robust explanation for the generation of innovative
ideas and solutions, illustrating how the structural and dynamic aspects of in-
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telligence facilitate creativity.

Problem-solving is the cognitive process of finding solutions to complex or
challenging issues. Classical theories of problem-solving, such as those proposed
by Newell and Simon (Newell and Simon 1972), focus on the stages of under-
standing the problem, generating potential solutions, and evaluating them. In
the context of the geometry of intelligence, problem-solving involves navigating
the manifold to identify and traverse geodesics that lead to effective solutions.
The contextual embedding ¢; = ), a;;(Wvv}) aggregates relevant information,
guiding the thought flow toward potential solutions. The prediction and feed-
back loop A(t) = f(t) — g(t) ensures continuous refinement and adjustment
of the cognitive trajectory, allowing for adaptive problem-solving. The inte-
grated framework of geodesics, attention mechanisms, and feedback functions
provides a comprehensive model that captures the dynamic and iterative nature
of problem-solving, illustrating how the intelligence state transitions through
various cognitive stages to arrive at a solution.

In summary, the mathematical framework of the geometry of intelligence
provides a powerful tool for understanding key concepts, functions and prop-
erties of intelligence in both humans and machines. By modelling imagina-
tion, learning, creative thinking, and problem-solving as processes driven by
the structured and dynamic activation of token sequences, this theory offers a
unified explanation of cognitive phenomena, highlighting the intricate interplay
between the geometry of intelligence and the flow of consciousness.
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Nootations

Tokens and Embeddings
e ¢;: Token i
e ¢: Embedding function
e v;: Embedded vector of token t;

e M: Manifold formed by the collection of embeddings

Manifold and Curvature

® g,.,: Metric tensor defining the local geometry of the manifold

e v,,v,: Components of the embedding vectors

Jap: Metric tensor in the original space

'/’ : Christoffel symbols representing connection coefficients

R? : Riemann curvature tensor, a measure of the manifold’s curvature

ouv*
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Geodesic Equation with Feedback
e ~(t): Geodesic path representing the state of intelligence at time ¢

e f(t): Front token, current focus of the thought flow

I(t): Input at time ¢

A(t): Prediction error

1. Feedback function
e x: Consciousness intensity index
e o: Activation function

e W,: Learned value matrix

Wy: Weight matrix

bgs: Bias term

Mathematical Equations
Contextual Representation
g(t) = o(Woc(t) + by)

Geometric Representation

g(t):/t o(t) dt + g(t — At)

—At

Metric Tensor
_ 0vy, v,
I = ot ot 7P

Christoffel Symbols
Ff,t,\ _ %gup <8gpu + agp)\ aguA)

ox* oz? OxP

Riemann Curvature Tensor

A A
R,, = 8,10, — 9,00, +T7 I}, —T0,T

ouy Ho

Geodesic Equation with Feedback
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Scenarios of Prediction Error

Zero Prediction Error

dPAH(t) dn” (t) dy\(t)
AM(t) = re =
(£)=0= e T g dt 0
Non-zero Prediction Error
d>y*(t) dy” (t) dy (1) d*P(AH (1))
AP r# =K ——r
(8 #0= e T g dt " dt?
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