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1
Introduction

1.1 What is Learning?

From an early age, our parents and teachers impress upon us the

importance of learning. We go to school, do homework, and write senior

theses in the name of learning. But what exactly is learning?

Theories of learning, which aim to answer this question, stretch back as

far as Plato. Plato’s theory, as presented in the Phaedo, understands

learning as the rediscovery of innate knowledge acquired at or before birth.

For the past two millennia, epistemologists have debated the meaning and

mechanisms of learning, with John Locke notably proposing a theory based

on the passive acquisition of simple ideas. Scientific approaches to

understanding learning emerged beginning in the nineteenth century. Ivan

Pavlov’s famous classical conditioning experiments, for example,

demonstrated how dogs learned to associate one stimulus (i.e. ringing

bells) with another (i.e. food). A multitude of disciplines now have

subfields dedicated to theories of learning: psychology, neuroscience,

pedagogy, and linguistics, to name only a few.

Over the past few decades, the rise and proliferation of computers has

prompted researchers to consider what it means for a computer algorithm

to learn. Specifically, the past two decades have seen a proliferation of

research in machine learning, the study of algorithms that can perform

tasks without being explicitly programmed. Now ubiquitous, these machine
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learning algorithms are integrated into a plethora of real-world systems and

applications. From Google Search to Netflix’s recommendation engine to

Apple’s Face ID software, much of the “intelligence” of modern computer

applications is a product of machine learning.

This thesis takes a mathematical approach to machine learning, with the

goal of building and analyzing theoretically-grounded learning algorithms.

We focus in particular on the subfield of semi-supervised learning, in which

machine learning models are trained on both unlabeled and labeled data.

In order to understand modern semi-supervised learning methods, we

develop an toolkit of mathematical methods in spectral graph theory and

Riemannian geometry. Throughout the thesis, we will find that

understanding the underlying mathematical structure of machine learning

algorithms enables us to interpret, improve, and extend upon them.

1.2 Lessons from Human and Animal Learning

Although this thesis is concerned entirely with machine learning, the ideas

presented within are grounded in our intuition from human and animal

learning. That is, we design our mathematical models to match our

intuition about what should and should not be considered learning.

An example here is illustrative. Consider a student who studies for a

test using a copy of an old exam. If the student studies in such a way that

he or she develops an understanding of the material and can answer new

questions about it, he or she has learned something. If instead the student

memorizes all the old exam’s questions and answers, but cannot answer

any new questions about the material, the student has not actually learned

anything. In the jargon of machine learning, we would say that the latter

student does not generalize: he makes few errors on the questions he has

seen before (the training data) and many errors on the questions he has

not seen before (the test data).

Our formal definition of learning, given in Chapter 2, will hinge upon

this idea of generalization. Given a finite number of examples from which

to learn, we would like to be able to make good predictions on new, unseen

examples.

Our ability to learn from finite data rests on the foundational assumption

that our data has some inherent structure. Intuitively, if we did not assume

that our world had any structure, we would not be able to learn anything

from past experiences; we need some prior knowledge, an inductive bias, to
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be able to generalize from observed data to unseen data. We can formalize

this intuitive notion in the No Free Lunch Theorem, proven in Chapter 2.

Throughout this thesis, we adopt the inductive bias that the functions

we work with should be simple. At a high level, this bias is Occam’s Razor:

we prefer simpler explanations of our data to more complex ones.

Concretely, this bias takes the form of regularization, in which we enforce

that the norm of our learned function is small.

The thesis builds up to a type of regularization called manifold

regularization, in which the norm of our function measures its smoothness

with respect to the manifold on which our data lie. Understanding

manifold regularization requires developing a substantial amount of

mathematical machinery, but it is worth the effort because it will enable us

to express the inductive bias that our functions should be simple.

1.3 Types of Learning

In computational learning, types of learning are generally categorized by

the data available to the learner. Below, we give an overview of the three

primary types of computational learning: supervised, semi-supervised, and

unsupervised learning. An illustration is shown in Figure 1.3.1.

1.3.1 Supervised Learning

The goal of supervised learning is to approximate a function f : X → Y

using a training set S = {xi, yi}Ni=1. Note that the space of inputs X and

the space of outputs Y are entirely general. For example, X or Y may

contain vectors, strings, graphs, or molecules. Usually, we will consider

problems for which Y is R (regression) or for which Y is a set of classes

Y = C = {0, 1, · · · , n− 1} (classification). The special case Y = {0, 1} is

called binary classification.

The defining feature of supervised learning is that the training set S is

fully-labeled, which means that every point xi has a corresponding label yi.

Example: Image Classification Image classification is the canonical

example of a supervised learning task in the field of computer vision. Here,

X is the set of (natural) images and Y is a set of |C| categories. Given an

image xi ∈ X, the task is to classify the image, which is to assign it a label
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Supervised Semi-Supervised Unsupervised

Figure 1.3.1: An illustration of supervised, semi-supervised, and unsupervised learn-
ing.

yi ∈ Y . The standard large-scale classification dataset ImageNet [28] has

|C| = 1000 categories and |S| ≈ 1, 200, 000 hand-labeled training images.

1.3.2 Semi-Supervised Learning

In semi-supervised learning, the learner is given access to labeled training

set SL = {xi, yi}NLi=1 along with unlabeled data SU = {xi}NUi=1. Usually, the

size of the unlabeled data is much larger than the size of the labeled data:

NU � NL.

It is possible to turn any semi-supervised learning problem into a

supervised learning problem by discarding the unlabeled data SU and

training a model using only the labeled data SL. The challenge of

semi-supervised learning is to use the information in the unlabeled data to

train a better model than could be trained with only SL. Semi-supervised

learning is the focus of this thesis.

Example: Semi-Supervised Semantic Segmentation Semantic

segmentation is the task of classifying every pixel of an image into a set of

categories; it may be thought of as pixelwise image classification. Semantic

segmentation models play a key role in self-driving car systems, as a

self-driving car needs to identify what objects (vehicles, bikes, pedestrians,

etc.) are on the road ahead of it.

High-resolution images contain millions of pixels, so labeling them for

the task of semantic segmentation is time-consuming and expensive. For

example, for one popular dataset with 5000 images, each image took over
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90 minutes for a human to annotate [26].12

In semi-supervised semantic segmentation, we train a machine learning

model using a small number of labeled images and a large number of

unlabeled images. In this way, it is possible to leverage a large amount of

easily-collected unlabeled data alongside a small amount of

arduously-annotated labeled data.

1.3.3 Unsupervised Learning

In unsupervised learning, we are given data X = {xi}Ni=1 without any

labels. In this case, rather than trying to learn a function f to a space of

labels, we aim to learn useful representations or properties of our data. For

example, we may try to cluster our data into semantically meaningful

groups, learn a generative model of our data, or perform dimensionality

reduction on our data.

Example: Dimensionality Reduction for Single-cell RNA Data

Researchers in biology performing single-cell RNA sequencing often seek to

visualize high-dimensional sequencing data. That is, they aim to embed

their high-dimensional data into a lower-dimensional space (e.g. the 2D

plane) in such a way that it retains its high-dimensional structure. They

may also want to cluster their data either before or after applying

dimensionality reduction. Both of these tasks may be thought of as

unsupervised learning problems, as their goal is to infer the structure of

unlabeled data.

Finally, we should note that there are a plethora of other subfields and

subclassifications of learning algorithms: reinforcement learning, active

learning, online learning, multiple-instance learning, and more.3 For our

purposes, we are only concerned with the three types of learning above.

1Labeling images for segmentation is so arduous that it has become a large industry:
Scale AI, a startup that sells data labeling services to self-driving car companies, is valued
at over a billion dollars. According to their website, they charge $6.40 per annotated frame
for image segmentation. If you were to record video at 30 frames-per-second for 24 hours
and try to label every frame, you would have to label 2,592,000 images. Many of these
images would be quite similar, but even if you subsampled to 1 frame-per-second, it would
require labeling 86,400 images.

2Annotation is even more costly in domains such as medical image segmentation, where
images must be annotated by highly-trained professionals.

3For an in-depth review of many of these fields, reader is encouraged to look at [73].
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1.4 Manifold Learning

As we observed above, in order to learn anything from data, we need to

assume that the data has some inherent structure. In some machine

learning methods, this assumption is implicit. By contrast, the field of

manifold learning is defined by the fact that it makes this assumption

explicit: it assumes that the observed data lie on a low-dimensional

manifold embedded in a higher-dimensional space. Intuitively, this

assumption, which is known as the manifold assumption or sometimes the

manifold hypothesis, states that the shape of our data is relatively simple.

For example, consider the space of natural images (i.e. images of

real-world things). Since images are stored in the form of pixels, this space

lies within the pixel space RH×W×3 consisting of all ordered sets of

3 ·H ·W real numbers. However, we expect the space of natural images to

be much lower dimensional than the pixel space; the pixel space is in some

sense almost entirely filled with images that look like “noise.” Moreover,

we can see that the space of natural images is nonlinear, because the

(pixel-wise) average of two natural images is not a natural images. The

manifold assumption states that the space of natural images has the

differential-geometric structure of a low-dimensional manifold embedded in

the high-dimensional pixel space.4

It should be emphasized that manifold learning is not a type of learning

in the sense of supervised, semi-supervised, and unsupervised learning.

Whereas these types of learning characterize the learning task (i.e. how

much labeled data is available), manifold learning refers to a set of

methods based on the manifold assumption. Manifold learning methods

are used most often in the semi-supervised and unsupervised settings,5 but

they may be used in the supervised setting as well.

1.5 Overview

This thesis presents the mathematics underlying manifold learning. The

presentation combines three areas of mathematics that are not usually

linked together: statistical learning, spectral graph theory, and differential

4In fact, a significant amount of work has gone into trying to identify the intrinsic
dimensionality of the image manifold [39].

5In particular, the manifold learning hypothesis underlies most popular dimensionality
reduction techniques: PCA, Isomaps [92], Laplacian Eigenmaps [9], Diffusion maps [24],
local linear embeddings [82], local tangent space alignment [109], and many others.

6



geometry.

The thesis builds up to the idea of manifold regularization in the final

chapter. At a high level, manifold regularization enables us to learn a

function that is simple with respect to the data manifold, rather than the

ambient space in which it lies.

In order to understand manifold learning and manifold regularization,

we first need to understand (1) kernel learning, and (2) the relationship

between manifolds and graphs.

Chapters 2 and 3 are dedicated to (1). Chapter 2 lays the foundations

for supervised and semi-supervised learning. Chapter 3 develops the theory

of supervised kernel learning in Reproducing Kernel Hilbert Spaces. This

theory lays mathematically rigorous foundations for large classes of

regularization techniques.

Chapter 4 is dedicated to (2). It explores the relationship between

graphs and manifolds through the lens of the Laplacian operator, a linear

operator that can be defined on both graphs and manifolds. Although at

first glance these two types of objects may not seem to be very similar, we

will see that the Laplacian reveals a remarkable correspondence between

them. By the end of the chapter, we will have developed a unifying

mathematical view of these seemingly disparate techniques.

Finally, Chapter 5 presents manifold regularization. We will find that,

using the Laplacian of a graph generated from our data, it is simple to add

manifold regularization to many learning algorithms. At the end of the

chapter, we will prove that this graph-based method is theoretically

grounded: the Laplacian of the data graph converges to the Laplacian of

the data manifold in the limit of infinite data.

This thesis is designed for a broad mathematical audience. Little

background is necessary apart from a strong understanding of linear

algebra. A few proofs will require additional background, such as

familiarity with Riemannian geometry. Illustrative examples from

mathematics and machine learning are incorporated into the text whenever

possible.
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2
Foundations

The first step in understanding machine learning algorithms is to define

our learning problem. In this chapter, we will only work in the supervised

setting, generally following the approaches from [20, 81, 84]. Chapter 5 will

extend the framework developed here to the semi-supervised setting.

2.0.1 Learning Algorithms & Loss Functions

A learning algorithm A is a map from a finite dataset S to a candidate

function f̂ , where f̂ is measurable. Note that A is stochastic because the

data S is a random variable. We assume that our data (xi, yi) are drawn

independently and identically distributed from a probability space X × Y
with measure ρ.

We define what it means to “do well” on a task by introducing a loss

function, a measurable function L : X × Y × F → [0,∞). This loss almost

always takes the form L(x, y, f) = L′(y, f(x)) for some function L′, so we

will write the loss in this way moving foward. Intuitively, we should think

of L(y, f̂(x)) as measuring how costly it is to make a prediction f̂(x) if the

true label for x is y. If we predict f(x) = y, which is to say our prediction

at x is perfect, we would expect to incur no loss at x (i.e. L(y, f̂(x)) = 0).

Choosing an appropriate loss function is an important part of using

machine learning in practice. Below, we give examples of tasks with

different data spaces X,Y and different loss functions L.
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Example: Image Classification Image classification, the task of

classifying an image x into one of C possible categories, is perhaps the

most widely-studied problem in computer vision. Here x ∈ RH×W×3, where

H and W are the image height and width, and 3 corresponds to the three

color channels (red, green, and blue). Our label space is a finite set Y = C
where |C| = C. A classification model outputs a discrete distribution

f(xi) = p = (p1, . . . , pC) over classes, with pc corresponding to the

probability that the input image x has class c.

As our loss function, we use cross-entropy loss:

L(y, f(x)) = − 1

N

C∑
c=1

1{yi = c} log(pc), p = f(xi)

Example: Semantic Segmentation As mentioned in the introduction,

semantic segmentation is the task of classifying every pixel in an input

image. Here, X = CH×W×3 like in image classification above, but

Y = CH×W unlike above. The output f(x) = p = (p
(h,w)
c ) is a distribution

over classes for each pixel.

As our loss function, we use cross-entopy loss averaged across pixels:

L(y, f(x)) = − 1

N ·H ·W

H∑
h=1

W∑
w=1

C∑
c=1

1{y(h,w)
i = c} log(p(h,w)

c ), p = f(x
(h,w)
i )

Example: Crystal Property Prediction A common task in

materials science is to predict the properties of a crystal (e.g. formation

energy) from its atomic structure (an undirected graph). As a learning

problem, this is a regression problem with X as the set of undirected

graphs and Y = R.

For the loss function, it is common to use mean absolute error (MAE)

due to its robustness to outliers:

L(y, f(x)) = |y − f(x)|

2.1 The Learning Problem

Learning is about finding a function f̂ that generalizes from our finite data

S to the infinite space X × Y . This idea may be expressed as minimizing
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the expected loss E , also called the risk:

E(f) = E[L(y, f(x))] =

∫
X×Y

L(y, f(x)) dρ(x, y)

Our objective in learning is to minimize the risk:

f∗ = arg min
f∈F

E[L(y, f(x))] = arg min
f∈F

∫
X×Y

L(y, f(x)) dρ(x, y)

Since we have finite data, even computing the risk is impossible. Instead,

we approximate it using our data, producing the empirical risk:

Ê(f) =
1

n

N∑
i=1

L(yi, f(xi)) ≈
∫
X×Y

L(y, f(x)) dρ(x, y) (2.1)

This concept, empirical risk minimization, is the basis of much of modern

machine learning.

One might hope that by minimizing the empirical risk over all

measurable functions, we would be able to approximate the term on the

right hand side of 2.1 and find a function f̂ = arg minf∈F Ê(f) resembling

the desired function f∗. However, without additional assumptions or

priors, this is not possible. In this unconstrained setting, no model can

achieve low error across all data distributions, a result known as the No

Free Lunch Theorem.

The difference between the performance of our empirically learned

function f̂ and the best possible function is called the generalization gap or

generalization error. We aim to minimize the probability that this error

exceeds ε:

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
Note that here P refers to the measure ρN and that f̂ is a random variable

because it is the output of A with random variable input S.1

It would be desirable if this gap were to shrink to zero in the limit of

infinite data:

lim
n→∞

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
= 0 ∀ε > 0 (2.2)

1Technically A could also be random, but for simplicity we will only consider deter-
ministic A and random S here.
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A learning algorithm with this property is called consistent with respect to

ρ. Stronger, if property 2.2 holds for all fixed distributions ρ, the algorithm

is universally consistent. Even stronger still, an algorithm that is consistent

across finite samples from all distributions is uniformly universally

consistent :

lim
n→∞

sup
ρ

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
= 0 ∀ε > 0 (2.3)

Unfortunately, this last condition is too strong. This is the famous “No

Free Lunch” Theorem.

Theorem 2.1.1 (No Free Lunch Theorem). No learning algorithm

achieves uniform universal consistency. That is, for all ε > 0:

lim
n→∞

sup
ρ

P
(
E(f̂)− inf

f∈F
E(f) > ε

)
=∞

For a simple proof, the reader is encouraged to see [84] (Section 5.1).

2.2 Regularization

The No Free Lunch Theorem states that learning in an entirely

unconstrained setting is impossible. Nonetheless, if we constrain our

problem, we can make meaningful statements about our ability to learn.

Looking at Equation 2.3, there are two clear ways to constrain the

learning problem: (1) restrict ourselves to a class of probability

distributions, replacing supρ with supρ∈Θ, or (2) restrict ourselves to a

limited class of target functions H, replacing inff∈F with inff∈H. We

examine the latter approach, as is common in statistical learning theory.

To make learning tractable, we optimize over a restricted set of

hypotheses H. But how should we choose H? On the one hand, we would

like H to be large, so that we can learn complex functions. On the other

hand, with large H, we will find complex functions that fit our training

data but do not generalize to new data, a concept known as overfitting.

Ideally, we would like to be able to learn complex functions when we

have a lot of data, but prefer simpler functions to more complex ones when

we have little data. We introduce regularization for precisely this purpose.

Regularization takes the form of a penalty R added to our loss term,

biasing learning toward simpler and smoother functions.
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Most of this thesis is concerned with the question of what it means to be

a “simple” or “smooth” function. Once we can express and compute what

it means to be simple or smooth, we can add this as a regularization term

to our loss.

Moreover, if we have any tasks or problem-specific notions of what it

means to be a simple function, we can incorporate them into our learning

setup as regularization terms. In this way, we can inject into our algorithm

prior knowledge about the problem’s structure, enabling more effective

learning from smaller datasets.

With regularization, learning problem turns into:

arg min
f∈H
Ê(f, x, y) + λR(f, x, y)

where H can be a relatively large hypothesis space.

The parameter λ balances our empirical risk term and our regularization

term. When λ is large, the objective is dominated by the regularization

term, meaning that simple functions are preferred over ones that better fit

the data. When λ is small, the objective is dominated by the empirical risk

term, so functions with lower empirical risk are preferred even when they

are complex. Tuning λ is an important element of many practical machine

learning problems, and there is a large literature around automatic

selection of λ [2].

Notation: The full expression L+ λR is often called the loss function

and denoted by the letter L. We will clarify notation in the following

chapters whenever it may be ambiguous.

Often, R depends only on the function f and its parameters. We will

call this data-independent regularization and write R(f) for ease of

notation. The reader may be familiar with common regularization

functions (e.g. L1/L2 weight penalties), nearly all of which are

data-independent. Manifold regularization, explored in Chapter 5, is an

example of data-dependent regularization.

Example (Data-Independent): Linear Regression In linear

regression, it is common to add a regularization term based on the

magnitude of the weights to the standard least-squares objective:

R(f) = ||w||α for α > 0

12



When α = 2, this is denoted Ridge Regression, and when α = 1, it is

denoted Lasso Regression. Both of these are instances of Tikhonov

regularization, a data-independent regularization method explored in the

following chapter.

Example (Data-Dependent): Image Classification When dealing

with specialized domains such as images, we can incorporate additional

inductive biases into our regularization framework. For example, we would

expect an image to be classified in the same category regardless of whether

it is rotated slightly, cropped, or flipped along a vertical line.

Recent work in visual representation learning employs these

transformations to define new regularization functions. For example, [105]

introduces a regularization term penalizing the difference between a

function’s predictions on an image and an augmented version of the same

image:

R(f, x) = KL(f(x), f(Aug(x))

where Aug is an augmentation function, such as rotation by 15◦, and

KL(·, ·) is the Kullback–Leibler divergence, a measure of the distance

between two distributions (because f(x) is a distribution over C possible

classes). This method currently gives state-of-the-art performance on

image classification in settings with small amounts of labeled data [105].

13



3
Kernel Learning

In the previous chapter, we described the learning problem as the

minimization of the regularized empirical risk over a space of functions H.

This chapter is dedicated to constructing an appropriate class of

function spaces H, known as Reproducing Kernel Hilbert Spaces. Our

approach is inspired by [13, 68, 75, 81].

Once we understand these spaces, we will find that our empirical risk

minimization problem can be greatly simplified. Specifically, the

Representer Theorem 3.3.1 states that its solution can be written as the

linear combination of functions (kernels) evaluated at our data points,

making optimization over H as simple as optimization over Rn.

At the end of the chapter, we develop these tools into the general

framework of kernel learning and describe three classical kernel learning

algorithms. Due to its versatility and simplicity, kernel learning ranks

among the most popular approaches to machine learning in practice today.

3.0.1 Motivation

Our learning problem, as developed in the last chapter, is to minimize the

regularized empirical risk

arg min
f∈H
Ê(f, x, y) + λR(f, x, y)

14



over a hypothesis space H. The regularization function R corresponds to

the inductive bias that simple functions are preferable to complex ones,

effectively enabling us to optimize over a large space H.

At this point, two issues remain unresolved: (1) how to define H to make

optimization possible, and (2) how to define R to capture the complexity of

a function.

If our functions were instead vectors in Rd, both of our issues would be

immediately resolved. First, we are computationally adept at solving

optimization problems over finite-dimensional Euclidean space. Second, the

linear structure of Euclidean space affords us a natural way of measuring

the size or complexity of vectors, namely the norm ‖v‖. Additionally, over

the course of many decades, statisticians have developed an extensive

theory of linear statistical learning in Rd.

In an ideal world, we would be able to work with functions in H in the

same way that we work with vectors in Rd. It is with this motivation that

mathematicians developed Reproducing Kernel Hilbert Spaces.

Informally, a Reproducing Kernel Hilbert Space (RKHS) is a

potentially-infinite-dimensional space that looks and feels like Euclidean

space. It is defined as a Hilbert space (a complete inner product space)

satisfying an additional smoothness property (the reproducing property).

Like in Euclidean space, we can use the norm ‖·‖K corresponding to the

inner product of the RKHS to measure the complexity of functions in the

space. Unlike in Euclidean space, we need an additional property to ensure

that if two functions are close in norm, they are also close pointwise. This

property is essential because it ensures that functions with small norm are

near 0 everywhere, which is to say that there are no “complex” functions

with small norm.

An RKHS is associated with a kernel K : X ×X → R, which may be

thought of as a measure of the similarity between two data points

x, x′ ∈ X. The defining feature of kernel learning algorithms, or

optimization problems over RKHSs, is that the algorithms access the data

only by means of the kernel function. As a result, kernel learning

algorithms are highly versatile; the data space X can be anything, so long

as one can define a similarity measure between pairs of points. For

example, it is easy to construct kernel learning algorithms for molecules,

strings of text, or images.
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3.1 Reproducing Kernel Hilbert Spaces

We are now ready to formally introduce Reproducing Kernel Hilbert

Spaces.

Recall that a Hilbert space V is a complete vector space equipped with

an inner product 〈·, ·〉. In this chapter (except for a handful of examples),

we will only work with real vector spaces, but all results can be extended

without much hassle to complex-dimensional vector spaces.

For a set X, we denote by RX the set of functions X 7→ R. We give RX
a vector space structure by defining addition and scalar multiplication

pointwise:

(f1 + f2)(x) = f1(x) + f2(x) (a · f)(x) = a · f(x)

Linear functionals, defined as members of the dual space of RX , may be

thought of as linear functions RX → R. A special linear functional ex,

called the evaluation functional, sends a function f to its value at a point x:

ex(f) = f(x)

When these evaluation functionals are bounded, our set takes on a

remarkable amount of structure.

Definition 3.1.1 (RKHS). Let X be a nonempty set. We say H is a

Reproducing Kernel Hilbert Space on X if

1. H is a vector subspace of RX

2. H is equipped with an inner product 〈·, ·〉 (it is a Hilbert Space)

3. For all x ∈ X, the linear evaluation functional ex : H → R is bounded.

The last condition implies that ex is continuous (even Lipschitz

continuous). To see this, we can write:

‖ex(f + h)− ex(f)‖ = ‖ex(h)‖ ≤M ‖h‖ for some constant M

Letting ‖h‖ → 0, we have the continuity of ex.

Importantly, by the well-known Riesz Representation Theorem, each

evaluation functional ex : H → R naturally corresponds to a function

kx ∈ H. We call kx the kernel function of x, or the kernel function centered

at x.
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Theorem 3.1.2 (Riesz Representation Theorem). If φ is a bounded linear

functional on a Hilbert space H, then there is a unique g ∈ H such that

φ(x) = 〈g, f〉

for all f ∈ H.

Corollary 1. Let H be a RKHS on X. For every x ∈ X, there exists a

unique kx ∈ H such that

〈kx, f〉 = f(x)

for all f ∈ H.

The kernel function of x is “reproducing” in the sense that its inner

product with a function f reproduces the value of f at x.

Definition 3.1.3 (Reproducing Kernel). The function K : H×H → R
defined by

K(x, y) = ky(x)

is called the reproducing kernel of H.

The kernel K is symmetric, as the inner product is symmetric:

K(x, y) = ky(x) = 〈ky, kx〉 = 〈kx, ky〉 = kx(y) = K(y, x)

If we were working in a complex vector space, the kernel would have

conjugate symmetry.

Theorem 3.1.4 (Equivalence Between Kernels and RKHS). Every RKHS

has a unique reproducing kernel, and every reproducing kernel induces a

unique RKHS.

Proof. We have already seen by means of the Riesz Representation

Theorem that every RKHS induces a unique kernel. The converse is a

consequence of the Cauchy-Schwartz inequality, which states

〈x, y〉 ≤ ‖x‖ ‖y‖. If K is a reproducing kernel on a Hilbert space H, then

ex(f) = 〈kx, f〉 ≤ ‖kx‖ ‖f‖ =
√
K(x, x) · ‖f‖

so ex is bounded, and H is an RKHS.

The existence of a reproducing kernel is sometimes called the

reproducing kernel property.

17



We note that although our original definition of an RKHS involved its

evaluation functionals, it turns out to be much easier to think about such a

space in terms of its kernel function than its evaluation functionals.

3.1.1 Examples

We now look at some concrete examples of Reproducing Kernel Hilbert

Spaces, building up from simple spaces to more complex ones.

Example: Linear Functions in Rd We begin with the simplest of all

Reproducing Kernel Hilbert Spaces, Euclidean spaces. Consider H = Rd
with the canonical basis vectors e1, . . . , ed and the standard inner product:

〈x,w〉 =
n∑
i=1

xiwi

With the notation above, X is the discrete set {1, . . . , d}, and ei ∈ H is the

kernel function

〈ei, x〉 = x(i) = xi

The reproducing kernel K : Rd × Rd → R is simply the identity matrix

K(i, j) = 〈ei, ej〉 = 1i == j

so that for any x, x′ ∈ Rd, we have

K(x, x′) = 〈x, x′〉

In general, for any discrete set X, the Hilbert space L2(X) = {f ∈ RX :∑
x |f(x)|2 <∞} of square-summable functions has a RKHS structure

induced by the orthonormal basis vectors ey(x) = 1{x = y}.

Example: Feature Maps in Rp We can extend the previous example

by considering a set of linearly independent maps D = {φi}pi=1 for

φi : X → R. Let H be the span:

H = span {D} = {f : X → R : f(x) =

p∑
i=1

wiφi(x) for some w ∈ Rp}

The maps φi are called feature maps in the machine learning community.
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We define the inner product on H by

〈x, x′〉H = 〈φ(x), φ(x′)〉Rp =

p∑
i=1

φi(x)φi(x
′)

and the kernel K : X ×X → R is simply

K(x, x′) = 〈φ(x), φ(x′)〉Rp

Linear functions correspond to the case where X = {1, . . . , d}, p = d, and

φi(x) = xi.

Example: Polynomials One of the most common examples of feature

maps are the polynomials of degree at most s in Rd. For example, for s = 2

and d = 2,

φ(x) = (1,
√

2x1,
√

2x2,
√

2x1x2, x
2
1, x

2
2)

with corresponding polynomial kernel

K(x, x′) = 1 + 2x1x
′
1 + 2x2x

′
2 + 2x1x2x

′
1x
′
2 + x2

1x
′2
1 + x2

2x
′2
2

= (1 + 〈x, x′〉)2

In general, the RKHS of polynomials of degree at most s in Rd has kernel

(1 + 〈x, x′〉)s and is a space of degree
(
s+d
d

)
.

Example: Paley-Wiener spaces The Paley-Wiener spaces are a

classical example of a RKHS with a translation invariant kernel, which is

to say a kernel of the form K(x, x′) = K ′(‖x− x′‖) for some function K ′.

Paley-Wiener spaces are ubiquitous in signal processing, where translation

invariance is a highly desirable property.

Since we are interested in translation-invariance, it is natural to work in

frequency space. Recall the Fourier transform:

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dt

Consider functions with limited frequencies, which is to say those whose

Fourier transforms are supported on a compact region [−A,A]. Define the

Paley-Wiener space PWA as

PWA = {f̂ : f ∈ L2([−A,A])}

19



where L2 refers to square-integrable functions.

We can endow PWA with the structure of an RKHS by showing that it

is isomorphic (as a Hilbert space) to L2([−A,A]). By the definition of

PWA, for every f̂ ∈ PWA, there exists an f ∈ L2[(−A,A)] such that

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξ dx =

∫ A

−A
f(x)e−2πixξ dx

We claim that this transformation, viewed as a map L2([−A,A])→ PWA,

is an isomorphism. It is clearly linear, so we need to show that it is

bijective.

To show bijectivity, note that the functions {x 7→ e2πinx/A}n∈N form a

basis for L2([−A,A]). Then if f̂(n/A) = 0 for every n ∈ N, we have f = 0

almost everywhere, and vice-versa. Therefore L2([−A,A]) and PWA are

isomorphic.

We can now give PWA the inner product

〈f̂1, f̂2〉PWA
= 〈f1, f2〉L2 =

∫ A

−A
f1(x)f2(x) dx

Since for any f̂ ∈ PWA,

|f̂(x)| =
∣∣∣〈f, e2πixξ〉L2

∣∣∣ ≤ ∥∥∥e2πixξ
∥∥∥
L2
‖f‖L2 =

√
2A
∥∥∥f̂∥∥∥

so the evaluation functionals f 7→ f(x) are bounded, and PWA is an

RKHS.

To obtain the kernel, we can use the fact that

〈f̂ , ky
∧
〉L2 = 〈f, ky〉PWA

= f(y) = 〈f̂ , e2πiyt〉L2

which gives by the inverse Fourier transform that ky(x) = e2πiyξ
∧

(x).

Computing this integral gives the kernel:

K(x, y) = ky(x) =

∫ A

−A
e2πi(x−y)ξ dξ

=

{
2A x = y

sin(2πA(x− y))/(π(x− y)) x 6= y
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This kernel is a transformation of the sinc function, defined as:

sinc(x) =

{
1 x = 0

sin(x)/x x 6= 0
, K(x, y) = 2Asinc(2Aπ(x− y))

Example: Sobolev Spaces Sobolev spaces are spaces of absolutely

continuous functions that arise throughout real and complex analysis.

A function f : [0, 1]→ R is absolutely continuous if for every ε > 0 there

exists δ > 0 such that, if a finite sequence of pairwise disjoint sub-intervals

{(xk, yk)} ⊂ [0, 1] satisfies
∑

k yk − xk < ε, then
∑

k |f(yk)− f(xk)| < δ.

Intuitively, absolutely continuous functions are those that satisfy the

fundamental theorem of calculus. Indeed, the fundamental theorem of

Lebesgue integral calculus states that the following are equivalent:

1. f is absolutely continuous

2. f has a derivative almost everywhere and f(x) = f(a) +
∫ x
a f
′(t)dt for

all x ∈ [a, b].

Let H be the set of absolutely continuous functions with square-integrable

derivatives that are 0 at 0 and 1:

H = {f : f ′ ∈ L2([0, 1]), f(0) = f(1) = 0, f absolutely continuous}

We endow H with the inner product

〈f, g〉 =

∫ 1

0
f ′(x)g′(x)dx

We see that the values of functions in H are bounded

|f(x)| =
∫ x

0
f ′(t) dt =

∫ 1

0
f ′(t)1{t < x} dt

≤
(∫ 1

0
f ′(t)2 dt

)1/2(∫ 1

0
1{t < x} dt

)1/2

= ‖f‖
√
x

so the evaluation functionals are bounded. It is simple to show that with

this inner product, the space H is complete, so H is an RKHS.

We now compute the kernel kx in a manner that is non-rigorous, but

could be made rigorous with additional formalisms. We begin by
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integrating by parts:

f(x) = 〈f, kx〉 =

∫ 1

0
f ′(t)k′x(t) dt = f(t)k′x(t)|10 −

∫ 1

0
f(t)k′′x(t) dt

= −f(t)k′′x(t) dt

We see that if kx were to satisfy

−k′′x(t) = δx(t), kx(0) = 0, kx(1) = 0

where δx is the Dirac delta function, it would be a reproducing kernel.

Such a function is called the Green’s function, and it gives us the solution:

kx(t) = K(t, x) =

{
(1− x)t t ≤ x
(1− t)x x ≤ t

It is now easy to verify that

〈f, kx〉 =

∫ 1

0
f ′(t)k′x(t) dt

=

∫ x

0
f ′(t)(1− x) dt+

∫ 1

x
f ′(t)(−x) dt

= f(x)

An Example from Stochastic Calculus In the above example, we

considered a function f on [0, 1] with a square-integrable derivative f ′ and

fixed the value of f to 0 and t = 0, 1. We found that the kernel K(x, t) is

given by x(1− t) for x < t.

If the reader is familiar with stochastic calculus, this description might

sound familiar. In particular, it resembles the definition of a Brownian

bridge. This is a stochastic process Xt whose distribution equals that of

Brownian motion conditional on X0 = X1 = 0. Its covariance function is

given by Cov(Xs, Xt) = s(1− t) for s < t.

Now consider the space H of functions for which we only require

f(0) = 0:

H = {f : f ′ ∈ L2([0, 1]), f(0) = 0, f absolutely continuous}

If the previous example resembled a Brownian bridge, this example

resembles Brownian motion. Indeed, by a similar procedure to the example
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above, one can show that the kernel function of H is given by

K(x, t) = min(s, t)

which matches the covariance Cov(Bs, Bt) = min(s, t) of Brownian motion.

This remarkable connection is no coincidence. Given a stochastic process

Xt with covariance function R, it is possible to define a Hilbert space H
generated by this Xt. A fundamental theorem due to Loeve [65] states that

this Hilbert space is congruent to the Reproducing Kernel Hilbert space

with kernel R.

Example: The Sobolev Space H1 Consider the space

H = H1 = {f : f ∈ L2(R), f ′ ∈ L2(R), f absolutely continuous}

endowed with the inner product

〈f, g〉 =
1

2

∫ ∞
−∞

f(t)g(t) + f ′(t)g′(t) dt

which induces the norm

‖f‖2H1 =
1

2

(
‖f‖2L2 +

∥∥f ′∥∥2

L2

)
The resulting RKHS H1, another example of a Sobolev space, may be

understood in a number of ways.

From the perspective of the Paley-Wiener spaces example, it is a

translation-invariant kernel best viewed in Fourier space. One can use

Fourier transforms to show that K(x, y) = κ(|x− y|), where κ̂(ξ) = 2
1+ξ .

Then an inverse Fourier transform shows K is given by

K(x, y) =
1

2
e−|x−y|

From the perspective of stochastic calculus, this space corresponds to the

Ornstein–Uhlenbeck process

dXt = −θXt dt+ σ dBt

which is square-continuous but not square-integrable. The kernel function
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of H corresponds to the covariance function of the OU process:1

K(s, t) ∝ Cov(Bs, Bt) =
σ2

2θ
e−θ|s−t|

Finally, we note that we can generalize this example. For any γ > 0, the

kernel

K(x, y) =
1

2
e−γ|x−y|

is called the exponential kernel, and corresponds to the norm

‖f‖2H =
1

2γ

(
‖f‖2L2 +

∥∥f ′∥∥2

L2

)

3.1.2 Structure

Thus far, we have defined an RKHS as a Hilbert space with the

reproducing property and given a number of examples of such spaces.

However, it is not yet clear why we need the reproducing property. Indeed,

all of the examples above could have been presented simply as Hilbert

spaces with inner products, rather than as RKHSs with kernels.

The best way of conveying the importance of the reproducing property

would be to give an example of a Hilbert space that is not an RKHS and

show that it is badly behaved. However, explicitly constructing such an

example is impossible. It is equivalent to giving an example of an

unbounded linear functional, which can only be done (non-constructively)

using the Axiom of Choice.

One commonly and incorrectly cited example of a Hilbert space that is

not an RKHS is L2(Ω), the space of square-integrable functions on a

domain Ω. This example is not valid because L2 is technically not a set of

functions, but rather a set of equivalence classes of functions that differ on

sets of measure 0. Whereas L2 spaces are not concerned with the values of

functions on individual points (only on sets of positive measure),

Reproducing Kernel Hilbert Spaces are very much concerned with the

values of functions on individual points.2 In this sense, RKHSs behave

quite differently from L2 spaces.

1Technically, an OU process with an initial condition drawn from a stationary distri-
bution, or equivalently the limit of an OU process away from a strict boundary condition.

2The reader is encouraged to go back and check that all of the examples above (particu-
larly Paley-Wiener spaces) are defined in terms of functions that are well-defined pointwise,
rather than equivalence classes of functions.
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Anti-Example This example illustrates the idea that the norm in L2

does not control the function pointwise. Consider a sequence fn ∈ L2([0, 1])

defined by

fn(x) =

{
1 1

2 −
1
n ≤ x ≤

1
2 + 1

n

0 otherwise

As n→∞, it converges in L2 norm to the 0 function. However, its value at

1/2 is always f(1/2) = 1. This is to say, there exist functions with

arbitrarily small norm and unbounded values at individual points.

The purpose of the reproducing property of an RKHS is to prevent this

type of behavior.

Theorem 3.1.5. Let H be an RKHS on X. If limn→∞ ‖fn − f‖ = 0, then

limn→∞ fn(x) = f(x) for all x ∈ X.

Proof. By the existence of reproducing kernels and Cauchy-Schwartz,

|fn(x)− f(x)| = |(fn − f)(x)| = |〈fn − f, kx〉| ≤ ‖fn − f‖ ‖kx‖

so limn→∞ |fn(x)− f(x)| = 0.

We may also express K pointwise in terms of the basis of the underlying

Hilbert space.

Theorem 3.1.6. Denote by {es}s∈S a basis for the RKHS H. Then

K(x, y) =
∑
s∈S

es(x)es(y)

where convergence is pointwise.

Proof. By the reproducing property,

ky =
∑
s∈S
〈ky, es〉es =

∑
s∈S

es(y)es

where the sum converges in norm, and so converges pointwise. Then

K(x, y) = ky(x) =
∑
s∈S

es(y)es(x)
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RKHS Feature Map
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Function     .

Figure 3.2.1: An illustration of the equivalence between kernels, positive functions,
and inner products of feature maps.

3.2 Kernels, Positive Functions, and Feature Maps

At this point, we are ready to fully characterize the set of kernel functions.

Definition 3.2.1 (Positive Function). Let X be an arbitrary set. A

symmetric function K : X ×X → is a positive function if for any n points

{x1, . . . , xn} in X, the matrix (K)ij = K(xi, xj) is positive semidefinite.

Equivalently, for any c1, . . . , cn in R, we have

n∑
i=1

n∑
i=1

cicjK(xi, xj)

Note: Positive functions are sometimes also called positive definite,

positive semidefinite, nonnegative, or semipositive. We will use the term

positive to mean ≥ 0, and the term strictly positive to mean > 0.

We now prove that there is a one-to-one correspondence between kernels

and positive functions.

Theorem 3.2.2. If K = 〈·, ·〉 is the kernel of an RKHS H, it is a positive

function.

Proof. First note that K is symmetric, as the inner product on H is

26



symmetric. Second, we compute

n∑
i,j=1

cicjK(xi, xj) = 〈
n∑
i=1

cixi,

n∑
i=1

cixi〉 =

∥∥∥∥∥
n∑
i=1

cixi

∥∥∥∥∥
2

≥ 0

The reverse direction is a celebrated theorem attributed to Moore.

Theorem 3.2.3 (Moore-Aronszajn Theorem). Let X be a set and suppose

K : X ×X → R is a positive function. Then there is a unique Hilbert space

H of functions on X → R for which K is a reproducing kernel.

Proof. Define ky by ky(x) = K(x, y). Note that if K were the kernel of an

RKHS H, then the span of the set {ky}y∈X would be dense in H, because if

〈ky, f〉 = 0 for all y ∈ X, then f(y) = 0 for all x ∈ X.

With this motivation, define V to be the vector space spanned by

{ky}y∈X . Define the bilinear form 〈·, ·〉 on V by

〈
∑
i

cikyi ,
∑
i

c′ikyi〉 =
∑
i,j

cic
′
jK(yi, yj)

We aim to show that 〈·, ·〉 is an inner product. It is positive-definite,

bilinear, and symmetric by the properties of K, so it remains to be shown

that it is well defined. To do so, we need to check f = 0 ⇐⇒ 〈f, g〉 = 0 for

all g ∈ V .

(=⇒) If 〈f, g〉 = 0 for all g ∈ V , letting g = ky we see 〈f, g〉 = f(y) = 0

for all y ∈ X. Therefore f = 0.

(⇐=) If f = 0, 〈f, ky〉 =
∑

i ciK(xi, y) = f(y) = 0. Since the ky span V ,

each g ∈ V may be expressed as a linear combination of the ky, and

〈f, g〉 = 0 for all g ∈ V .

Therefore 〈·, ·〉 is well-defined and is an inner product on V . Moreover,

we may produce the completion G of V by considering Cauchy sequences

with respect to the norm induced by this inner product. Note that G is a

Hilbert space.

All that remains is to identify a bijection between G and the set of

functions X → R. Note that this is where an L2 space fails to be an

RKHS. Let H be the set of functions of the form f(x) = 〈f, kx〉, such that

H = {f : f ∈ G}
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and observe that elements of H are functions X → R. We see that if f = 0,

then 〈f, kx〉 = 0 for all x ∈ X, so h = 0. Therefore the mapping f 7→ f is

linear (by the properties of the inner product) and one-to-one. Thus, the

space H with the inner product 〈f, g〉H = 〈f, g〉G is a Hilbert space with

the reproducing kernels kx for x ∈ X. This is our desired RKHS.

There is one final piece in the RKHS puzzle, the concept of feature

spaces.

Let X be a set. Given a Hilbert space F, not necessarily composed of

functions X → R, a feature map is a function φ : X → F. In machine

learning, X and F are usually called the data space and the feature space,

respectively. Above, we saw this example in the case H = Rp. Now φ may

take values in an infinite-dimensional Hilbert space, but the idea remains

exactly the same.

Given a feature map φ, we construct the kernel given by the inner

product

K(·, ·) = 〈φ(·), φ(·)〉

or equivalently φ(x) = kx. As shown above, this kernel defines an RKHS on

X.

Conversely, every kernel K may be written as an inner product

〈φ(·), φ(·)〉 for some feature map φ. In other words, the following diagram

commutes:

X ×X

F× F R

φ K

〈·,·〉

We note that the Hilbert space F and feature map φ above are not unique.

However, the resulting Reproducing Kernel Hilbert Space, composed of

functions X → R, is unique. In other words, although a feature map

specifies a unique RKHS, a single RKHS may have possible feature map

representations.

Theorem 3.2.4. A function K : X ×X → R is positive if and only if it

may be written as 〈φ(·), φ(·)〉 for some Hilbert space F and some map

φ : X → F.
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Proof. We give a proof for finite-dimensional Hilbert spaces. It may be

extended to the infinite-dimensional case with spectral operator theory, but

we will not give all the details here.

First, suppose K = 〈φ(·), φ(·)〉F. Then for v ∈ F,

〈v,Kv〉 =
n∑
i=1

vi

n∑
i=1

〈φ(xi), φ(xj)〉vj = 〈
n∑
i=1

viφ(xi),
n∑
i=1

viφ(xi)〉 ≥ 0

so K is positive definite.

Second, suppose K is positive. Decompose it into K = V ΛV T by the

spectral theorem, and let φ(x) = Λ1/2V T1x. Then we have

〈φ(x), φ(x′)〉F = 〈1x,1x′〉K = K(x, x′)

so K = 〈φ(·), φ(·)〉F.

We now have a full picture of the relationship between Reproducing

Kernel Hilbert Spaces, positive-definite functions, and feature maps.

3.2.1 Geometry

One way to think of an infinite-dimensional RKHS is as a map x 7→ kx that

sends every point in X to a point kx : X → R in an infinite-dimensional

feature space.

The kernel function K defines the geometry of the infinite-dimensional

feature space.

Example: Gaussian Kernel Let X = Rd and consider the Gaussian

kernel, perhaps the most widely used kernel in machine learning:

K(x, x′) = e−
1
2
‖x−x′‖2

The kernel function kx corresponding to a point x is a Gaussian centered

at x. Due to its radial symmetry, this kernel is also called the radial basis

function (RBF) kernel.

It turns out that explicitly constructing the RKHS for the Gaussian

kernel is challenging (it was only given by [106] in 2006). However, since it

is not difficult to show that K is a positive function, we can be sure that

such an RKHS exists.
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Let us look at its geometry. We see that each point x ∈ X is mapped to

a point kx with unit length, as ‖kx‖2 = K(x, x) = 1. The distance between

two points kx, ky is:

‖kx − ky‖2 = K(x− y, x− y) = K(x, x)− 2K(x, y) +K(y, y)

= 2
(

1− e−
1
2
‖x−y‖2

)
< 2

so any two points are no more than
√

2 apart.

Example: Min Kernel Consider the kernel K(s, t) = min(s, t) for

s, t ∈ R. This kernel induces a squared distance

dK(s, t)2 = K(s, s)− 2K(s, t) +K(t, t)

= s+ t− 2 min(s, t)

= max(s, t)−min(s, t)

= |s− t|

the square root of the standard squared Euclidean distance on R.

In general, so long as the map x 7→ kx is unique, the function

dK(x, y) =
√
K(x− y, x− y) =

√
K(x, x)− 2K(x, y) +K(y, y)

is a valid distance metric on H. In this sense, the kernel defines the

similarity between two points x and y. From a feature map perspective,

the distance is

dK(x, y) = ‖φ(x)− φ(y)‖

This metric enables us to understand the geometry of spaces that, like the

RKHS for the Gaussian Kernel, are difficult to write down explicitly.

3.2.2 Integral Operators

We now take a brief detour to discuss the relationship between kernels and

integral operators. This connection will prove useful in Chapter 5.

We say that a kernel K : X ×X → R is a Mercer kernel if it is

continuous and integrable.3 That is, K ∈ L2(X ×X), meaning

3The notation used throughout the literature is not consistent. It is common to see
“Mercer kernel” used interchangeably with “kernel”. In practice, nearly every kernel of
interest is a Mercer kernel.
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∫
X

∫
X K(x, x′) dx dx′ <∞.

Suppose that X is compact and define the integral operator

IK : L2(X)→ L2(X) by

IKf(x) =

∫
X
K(x, x′)f(x′) dx′

It is not difficult to show that IK is linear, continuous, compact,

self-adjoint, and positive. Linearity follows from the linearity of integrals,

continuity from Cauchy-Schwartz, compactness from an application of the

Arzelà–Ascoli theorem, self-adjointness from an application of Fubini’s

theorem, and positivity from the fact that the integral fIkf is a limit of

finite sums of the form
∑

i,j f(xi)K(xi, xj)f(xj) ≥ 0.

Since IK is a compact, positive operator, the spectral theorem states

that there exists a basis of L2(X) composed of eigenfunctions of IK .

Denote these eigenfunctions and their corresponding eigenvalues by {φi}∞i=1

and {λi}∞i=1, respectively. Mercer’s theorem states that one can decompose

K in this basis:

Theorem 3.2.5 (Mercer).

K(x, y) =

∫ ∞
i=1

λiφi(x)φi(y)

where the convergence is absolute and uniform over X ×X.

This theorem is not challenging to prove, but it requires building

significant machinery that would not be of further use. We direct the

interested reader to [80] (Section 98) for a detailed proof.

3.3 Tikhonov Regularization and the Representer Theo-
rem

Having built our mathematical toolkit, we return now to machine learning.

Our goal is to minimize the regularized empirical risk

Ê(f(x), y) + λR(f, x, y) over a space H.

Let H be an RKHS, as we are concerned with the values of functions

pointwise. Let R be the norm ‖f‖2K = K(f, f), as its purpose is to measure

the complexity of a function.

Denote our data by S = {(xi, yi)}Ni=1, and let Ê(f, x, y) be the sum of a
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loss function L(f(xi), yi) over the data. Our learning problem is then

arg min
f∈H

1

N

N∑
i=1

L(f(xi), yi) + λ ‖f‖2K (3.1)

where λ > 0. This general framework is known as Tikhonov regularization.

The Representer Theorem reduces this infinite-dimensional optimization

problem to a finite-dimensional one. It states that our desired solution is a

linear combination of the kernel functions on the data points.

Theorem 3.3.1 (Representer Theorem). Let H be an RKHS on a set X

with kernel K. Fix a set of points S = {x1, x2, . . . , xN} ⊂ X. Let

J(f) = L(f(x1), . . . , f(xn)) +R(‖f‖2H)

and consider the optimization problem

min
f∈H

J(f)

where R is nondecreasing. Then if a minimizer exists, there is a minimizer

of the form

f =
N∑
i=1

αikxi

where αi ∈ R. Moreover, if P is strictly increasing, every minimizer has

this form.

Proof. The proof is a simple orthogonality argument.

Consider the subspace T ⊂ H spanned by the kernels at the data points:

T = span {kxi : xi ∈ S}

Since S is a finite dimensional subspace, so it is closed, and every f ∈ H
may be uniquely decomposed as f = fT + f⊥, where fT ∈ T and f⊥ ∈ T⊥.

By the reproducing property, we may write f(xi) as

f(xi) = 〈f, kxi〉 = 〈fT , kxi〉+ 〈f⊥, kxi〉 = 〈fT , kxi〉
= fT (xi)

Also note

R(‖f‖2) = R(‖fT ‖2 + ‖f⊥‖2) ≥ R(‖fT ‖2)
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Then J(f) may be written as

J(f) = L(f(x1), . . . , f(xn)) +R(‖f‖2) = L(fT (x1), . . . , fT (xn)) +R(‖f‖2)

≥ L(fT (x1), . . . , fT (xn)) +R(‖fT ‖2)

= J(fT )

Therefore, if f is a minimizer of J , fT is also a minimizer of J , and fT has

the desired form. Furthermore, if R is strictly increasing, the ≥ above may

be replaced with >, so f cannot be a minimizer of J unless f = fT .

If L is a convex function, then a minimizer to Equation 3.1 exists, so by

the Representer Theorem it has the form

f(x) =
N∑
i=1

αiK(xi, x)

Practically, it converts the learning problem from one of dimension d (that

of the RKHS) to one of dimension N (the size of our data set). In

particular, it enables us to learn even when d is infinite.

3.4 Algorithms

With the learning problem now fully specified, we are ready to look at

algorithms.

Regularized Least Squares Regression

In regularized least squares regression, we aim to learn a function

f : X → R minimizing the empirical risk with the loss function

L(f(x), y) = (f(x)− y)2. In other words, the learning problem is:

arg min
f∈H

1

N

N∑
i=1

(f(xi)− yi)2 + λ ‖f‖2K

where (xi, yi) ∈ X × R are our (training) data.

By the Representer Theorem, the solution f of this learning problem
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may be written:

f(x) =
N∑
i=1

αiK(xi, x)

We now solve for the parameters α = (α1, . . . , αN ).

For ease of notation, we write x = (x1, . . . , xN ), y = (y1, . . . , yN ). Denote

by K the N ×N kernel matrix on the data, also called the Gram matrix :

K = (Kij)(K(xi, xj)). With this notation, we have

(f(x1), . . . , f(xn)) = Kα and ‖f‖2K = αTKα

so our objective may be written as

arg min
f∈H

1

N
(Kα− y)T (Kα− y) + λαTKα (3.2)

To optimize, we differentiate with respect to α, set the result to 0, and

solve:

0 =
2

N
K(Kα∗ − y) + 2λKα∗ = K((K + λNI)α∗ − y) (3.3)

Since K is positive semidefinite, (K + λNI) is invertible, and

α∗ = (K + λNI)−1y

is a solution. Therefore

f(x) =
N∑
i=1

αiK(xi, x)

with α = (K + λNI)−1y is a minimizer of the learning problem.

If X = Rd with the canonical inner product, the Gram matrix is simply

K = XXT , where X is the N × d matrix of data. Then α∗ becomes

α∗ = (XXT + λNI)−1y and the minimizer of the learning problem may be

written as

XT (XXT + λNI)−1y (3.4)

A Woodbury matrix identity states that for any matrices U, V of the

correct size, (I + UV )−1 = I − U(I + V U)−1V . The expression above may

then be written as

(XTX + λNI)−1XT y (3.5)
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which is the familiar solution to a least squares linear regression.

Comparing Equations 3.4 and 3.5, we see that the former involves

inverting a matrix of size N ×N , whereas the latter involves inverting a

matrix of size d× d. As a result, if d > N , it may be advantageous to use

3.4 even for a linear kernel.

A Note on Uniqueness: The process above showed that

α∗ = (K + λNI)−1y is a solution to Equation 3.2, but not that it is unique.

Indeed, if the rank of K is less than N , multiple optimal α ∈ Rd may exist.

However, the function f ∈ H constructed from these α will be the same.

To see this, note that Equation 3.3 shows that for any optimal α, we have

α = (K + λNI)−1 − y + δ, where Kδ = 0. Therefore for any two optimal

α, α′ we have ∥∥f − f ′∥∥2
= (α− α′)TK(α− α′) = 0

and so f = f ′.

Regularized Logistic Regression

Regularized logistic regression, which is a binary classification problem,

corresponds to the logistic loss function

log(1 + e−yif(xi))

where the binary labels y are represented as {−1, 1}. Our objective is then

arg min
f∈H

1

N

N∑
i=1

log(1 + e−yif(xi)) + λ ‖f‖2K

Our solution takes the form given by the Representer Theorem, so we need

to solve

arg min
α∈RN

1

N

N∑
i=1

log(1 + e−yi(Kα)i) + λαTKα

for α. Unfortunately, unlike for least squares regression, this equation has

no closed form. Fortunately, it is convex, differentiable, and highly

amenable to gradient-based optimization techniques (e.g. gradient

descent). These optimization methods are not a focus of this thesis, so we

will not go into further detail, but we note that they are computationally

efficient and widely used in practice.
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Regularized Support Vector Machines

Regularized support vector classification, also a binary classification

problem, corresponds to the hinge loss function

Lsup(f(x), y) = max(0, 1− yf(x)) = (1− yf(x))+

where yi ∈ {−1, 1}. As always, our objective is

arg min
f∈H

1

N

N∑
i=1

log(1 + e−yif(xi)) + λ ‖f‖2K

and our solution takes the form given by the Representer Theorem. Like

with logistic regression, we solve

arg min
α∈RN

1

N

N∑
i=1

log(1 + e−yi(Kα)i) + λαTKα

for α by computational methods. The one caveat here is that we need to

use “subgradient-based” optimization techniques rather than

gradient-based techniques, as the gradient of the hinge loss is undefined at

0.

The Kernel Trick

Suppose we have an algorithm A where the data xi are only used in the

form 〈xi, ·〉. In this case, we can kernelize the algorithm by replacing its

inner product with a kernel K. This process, known as the kernel trick,

effectively enables us to work in infinite-dimensional feature spaces using

only finite computational resources (i.e. only computing the kernel

functions K).

3.4.1 Building Kernels

In practice, applying kernel methods translates to building kernels that are

appropriate for one’s specific data and task. Using task-specific kernels, it

is possible to encode one’s domain knowledge or inductive biases into a

learning algorithm. The problem of automatically selecting or building a

kernel for a given task is an active area of research known as automatic
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Name Periodic Kernel Areas of Application

Linear 7 xTx′ Ubiquitous

Polynomial 7 (c+ xTx′)p Ubiquitous

Gaussian 3 e−
1
2σ
‖x−y‖2 Ubiquitous

Exponential 3 e−σ‖x−y‖ Ubiquitous

Tanh 7 tanh(σxTx′ + b) Neural networks

Dirichlet 3
sin((n+1/2)(x−x′))

2π sin((x−x′)/2) Fourier analysis

Poisson 3 1−σ2

σ2−2σ cos(x−x′)+1
Laplace equation in 2D

Sinc 3
sin(σ(x−x′))

(x−x′) Signal processing

Rational Quadratic 3 σ2
(

1 + (x−x′)2
2α`2

)−α
Gaussian processes

Exp-Sine-Squared 3 σ2 exp
(
−2 sin2(π|x−x′|/p)

`2

)
Gaussian processes

Matérn Kernel 3 σ2 21−ν

Γ(ν)

(
√

2ν |x−x
′|

ρ

)ν
Kν

(
√

2ν |x−x
′|

ρ

)
Gaussian processes

Table 3.4.1: Examples of commonly used kernel functions.

kernel selection.

Although building kernels for specific tasks is outside the scope of this

thesis, we give below a few building blocks for kernel construction. Using

these building blocks, one can create complex kernels from simpler ones.

Properties Let K,K ′ be kernels on X, and let f be a function on X.

Then the following are all kernels:

• K(x, x′) +K ′(x, x′)

• K(x, x′) ·K ′(x, x′)

• f(x)K(x, x′)f(x′)

• K(f(x), f(x′))

• exp(K(x, x′))

• K(x,x′)√
K(x,x)

√
K(x′,x′)

, called the normalized version of K
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We remark that all these properties may be thought of as properties of

positive functions.

Kernels from Probability Theory A few interesting kernels arise

from probability theory. For events A,B, the following are kernels:

• K(A,B) = P (A ∩B) is a kernel.

• K(A,B) = P (A ∩B)− P (A)P (B) is a kernel.

• H(X) +H(X ′)−H(X,X ′)

At first glance, the mutual information I(X,X ′) also looks like a kernel,

but this turns out be quite tricky to prove or disprove. The problem was

only solved in 2012 by Jakobsen [49], who showed that I(X,X ′) is a kernel

if and only if dim(X) ≤ 3.

Common Kernels in Machine Learning Examples of some common

kernels are given in Table 3.4.1, and even more examples are available at

this link.
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4
Graphs and Manifolds

We now turn our attention from the topic of Reproducing Kernel Hilbert

Spaces to an entirely new topic: the geometry of graphs and Riemannian

manifolds. The next and final chapter will combine these two topics to

tackle regularized learning problems on graphs and manifolds.

The purpose of this chapter is to elucidate the connection between

graphs and manifolds. At first glance, these two mathematical objects may

not seem so similar. We usually think about graphs in terms of their

combinatorial properties, whereas we usually think about manifolds in

terms of their topological and geometric properties.

Looking a little deeper, however, there is a deep relationship between the

two objects. We shall see this relationship manifest in the Laplacian

operator, which emerges as a natural operator on both graphs and

manifolds. The same spectral properties of the Laplacian enable us to

understand the combinatorics of graphs and the geometry of manifolds.

This chapter explores how the two Laplacians encode the structures of

their respective objects and how they relate to one another. By the end of

the chapter, I hope the reader feels that graphs are discrete versions of

manifolds and manifolds are continuous versions of graphs.
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Related Work & Outline

Numerous well-written references exist for spectral graph theory [23, 87]

and for analysis on manifolds [19], but these topics are usually treated

independent from one another.1 One notable exception is [15], illustratively

titled “How is a graph like a manifold?”. This paper examines a different

aspect of the graph-manifold connection from the one examined here;

whereas [15] is concerned with group actions on complex manifolds and

their connections to graph combinatorics, this chapter is concerned with

spectral properties of the Laplacian on both manifolds and graphs.

Rather than discuss graphs and then manifolds, or vice-versa, we discuss

the two topics with a unifying view. Throughout, we highlight the

relationship between the Laplacian spectrum and the concept of

connectivity of a graph or manifold.

We assume that the reader is familiar with some introductory differential

geometry (i.e. the definition of a manifold), but has not necessarily seen

the Laplacian operator on either graphs or manifolds before.

4.1 Smoothness and the Laplacian

As seen throughout the past two chapters, we are interested in finding

smooth functions. On a graph or a manifold, what does it mean to be a

smooth function? The Laplacian holds the key to our answer.

Let G = (V,E) be a connected, undirected graph with edges E and

vertices V . The edges of the graph can be weighted or unweighted (with

nonnegative weights); we will assume it is unweighted except where

otherwise specified. When discussing weighted graphs, we denote by wij
the weight on the edge between nodes i and j.

A real-valued function on G is a map f : V → R defined on the vertices

of the graph. Note that these functions are synonymous with vectors, as

they are of finite length.

Intuitively, a function on a graph is smooth if its value at a node is

similar to its value at each of the node’s neighbors. Using squared

1The literature on Laplacian-based analysis of manifolds is slightly more sparse the
spectral graph theory literature. For the interested reader, I highly recommend [19].
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difference to measure this, we arrive at the following expression:∑
(i,j)∈E

(f(i)− f(j))2 (4.1)

This expression is a symmetric quadratic form, so there exists a symmetric

matrix L such that

fTLf =
∑

(i,j)∈E

(f(i)− f(j))2

where f = (x(1), . . . , x(n)) for n = |V |.
We call L the Laplacian of the graph G. We may think of L as a

functional on the graph that quantifies the smoothness of functions.

The Laplacian of a weighted graph is defined similarly, by means of the

following quadratic form:

xTLx =
∑

(i,j)∈E

wij(x(i)− x(j))2

Notation: Some texts work with the normalized Laplacian L rather

than the standard Laplacian L. The normalized Laplacian is given by

D−1/2LD−1/2, where D is the diagonal matrix of degrees of vertices (i.e.

Dii = deg(i)).

We now turn our attention to manifolds. Let (M, g) be a Riemannian

manifold of dimension n. As a refresher, this means that M is a smooth

manifold and g is a map that smoothly assigns to each x ∈M an inner

product 〈·, ·〉gx on the tangent space TxM at x. For ease of notation, when

it is clear we will writeM in place of (M, g) and gx(·, ·) in place of 〈·, ·〉g(x).

Suppose we wish to quantify the smoothness of a function f :M→ R at

a point x ∈M. A natural way of doing this would be to look at the

squared norm ‖∇f‖2 of the gradient of f at x. This quantity is analogous

to the squared difference between a node’s value and the values of its

neighbors in the graph case. Informally, if we write ‖∇f‖2 as f∇ · ∇f , it

looks like a quadratic form. As in the graph case, we associate this form

with an operator ∆.

Formally, we define ∆ as the negative divergence of the gradient, written

as ∆ = −∇ · ∇ or −div∇ or −∇2. We call ∆ the Laplacian or

Laplace-Beltrami operator on the manifold M.

Notation: Some texts define ∆ as div∇, without a negative sign. In
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these texts, the Laplace-Beltrami operator is negative semidefinite and its

eigenvalue equation is written as ∆f = −λf rather than ∆f = λf . Here,

we adopt the negated version for simplicity and for consistency with the

graph literature, where the Laplacian is positive semidefinite.

Since ‖∇f(x)‖2 describes the smoothness of a function f at x,

integrating it over the entire manifold gives a notion of the smoothness of f

on M: ∫
M
‖∇f(x)‖2 dx

This quantity (technically 1/2 of this quantity) is called the Dirichlet

energy and denoted by E[f ]. It plays a role analogous to Equation 4.1 on

the graph, and occurs throughout physics as a measure of the variability of

a function. In fact, the Laplace operator may be thought of as the

functional derivative of the Dirichlet energy.

4.1.1 More Definitions and Properties

Readers familiar with graph theory or analysis may have noticed that the

definitions given above are not the most common ways to introduce

Laplacians on either graphs or manifolds.

Usually, one defines the Laplacian of a graph G in terms of the

adjacency matrix A.2 The Laplacian is given by

L = D −A

where Dii = deg(i) is the diagonal matrix of degrees of nodes. The

normalized laplacian is then:

L = I −D−1/2AD−1/2

A simple computation shows that these definition and our original one are

2At first glance, the adjacency matrix might seem to be the most natural matrix to
associate to a graph. However, for a variety of reasons, the Laplacian in general turns
out to be much more connected to the fundamental combinatorial properties of the graph.
The one notable exception to this rule is in studying random walks, where the powers and
spectrum of the adjacency matrix define the behavior and equilibrium state of the random
walk.
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equivalent:

xT (D −A)x = xTDx+ xTAx

=
n∑
i=1

deg(i)x2
i −

∑
(i,j)∈E

2xixj

=
n∑
i=1

∑
(i,j)∈E

x2
i −

∑
(i,j)∈E

2xixj

=
∑

(i,j)∈E

(x2
i + x2

j − 2xixj)

=
∑

(i,j)∈E

(xi − xj)2

= xTLx

Some basic properties of the Laplacian, although not obvious from the

definition L = D −A, are obvious given the quadratic form definition.

Namely, L is symmetric and positive semi-definite, since for any x,

xTLx =
∑

(i,j)∈E

(xi − xj)2 ≥ 0

As a result, all eigenvalues of L are non-negative. We can also see that the

smallest eigenvalue is 0, corresponding to an eigenfunction that is a

(non-zero) constant function.

Turning to manifolds, the Laplacian ∆ is also usually introduced in a

different manner from the one above. In the context of multivariable

calculus, it is often defined as:

∆f = −∂
2f

∂x2
− ∂2f

∂y2
− ∂2f

∂z2

which is easily verified to be equal to div∇f in RN . This coordinate-wise

definition can be extended to the local coordinates of a Riemannian

manifold with metric tensor g:

∆ = − 1√
|det g|

n∑
i,j=1

(
gij
√
|det g| ∂

∂xj

)
(4.2)

However, if one would like to work with coordinates on a manifold, it is

much more natural to work in the canonical local coordinates. To switch
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to these coordinates, we use the exponential map expp : TpM(= Rn)→M,

which is a local diffeomorphism between a neighborhood of a point p ∈M
and a neighborhood of 0 in the tangent space TpM. This coordinate map

gives a canonical identification of a neighborhood of p with RN , called

geodesic normal coordinates. In geodesic normal coordinates, gij = δij and
∂gij
∂xk

= 0, so the formula for ∆ resembles the formula in Euclidean space.

Finally, we should note that yet another way to define the Laplacian ∆

is as the trace of the Hessian operator H:

∆ = Tr(H)

where the Hessian H at p is ∇p(df), the gradient of the differential of f .

Note that since the Hessian is coordinate-free (i.e. invariant under

isometries), this relation shows us that Laplacian is coordinate-free.

4.1.2 Examples

Below, we present a few examples of Riemannian manifolds and graphs

along with their Laplacians.

Example: Rn The most ordinary of all Riemannian manifolds is Rn with

the Euclidean metric g = 〈·, ·〉Rn . In matrix form, g is the identity matrix

of dimension n: gij = δij and det g = 1. Following formula 4.2, we have

∆g,Rn = −
n∑
i=1

∂2

∂x2
i

which is the familiar form of the divergence of the gradient in Rn.

Example: S1 The simplest nontrivial Riemannian manifold is the circle

S1 ⊂ R2 with the metric induced by R2. We may parameterize the circle as

(cos(θ), sin(θ)), with the resulting metric g = dθ2 (induced from R2 as

dx2 + dy2 = dr2 + r2 dθ2 = dθ2). In matrix form, g is simply the

1-dimensional matrix (1). Consequently,

∆g, S1 = − ∂2

∂θ2

as above. A similar result holds for all one-dimensional manifolds.
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Example: Cycle Graph A simple graph similar to the smooth circle

above is the cycle graph. The Laplacian L of a cycle graph G with n

vertices is given by:

L = D −A =


2 0 0 0

0
. . . 0 0

0 0 2 0
0 0 0 2

−


0 1 0 1

1 0
. . . 0

0
. . . 0 1

1 0 1 0



=



2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1
. . .

. . . 0 0

0 0
. . .

. . . −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2


Readers familiar with numerical analysis might note that this matrix

resembles the (negated) second-order discrete difference operator

∂2u

∂x2
≈ −−ui+1 + 2ui − ui−1

δx

which suggests a connection to the manifolds above. As we will see later,

the Laplacian spectra of the circle and the cycle graph are closely related.

Example: S2 Consider the 2-sphere parameterized in spherical

coordinates with the metric induced from R3:

T : [0, π)× [0, 2π)→ S2

T (θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)

Changing to spherical coordinates shows that the metric is given by

g = dx2 + dy2 + dz2 = (dx2 + dy2) + dz2 = dθ2 + sin2 θdφ

so in matrix form g is

g(θ, φ) =

(
1 0
0 sin2 θ

)
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Cycle Graph Path Graph Star GraphComplete Graph

Figure 4.1.1: A few classic graphs and their Laplacians.

with determinant det g = sin2 θ. Then by formula 4.2, the Laplacian is

∆ = − 1√
det g

(
∂

∂θ

(
gθθ
√

det g
∂

∂θ

)
+

∂

∂φ

(
gφφ
√

det g
∂

∂φ

))
= − 1

sin θ θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2

This expression enables us to work with the eigenvalue equation ∆f = λf

in spherical coordinates, a useful tool in electrodynamics and

thermodynamics.

Example: More Classic Graphs Figure 4.1.1 shows the cycle graph

and three more classic graphs—the complete graph, path graph, and star

graph—alongside their Laplacians.

Example: Flat Torus An n-dimensional torus is a classic example of a

compact Riemannian manifold with genus one, which is to say a single

“hole”.

Topologically, a torus T is the product of spheres, S1 × · · · × S1 = (S1)n.

Equivalently, a torus may be identified with Rn/Γ, where Γ is an

n-dimensional lattice in Rn (a discrete subgroup of Rn isomorphic to Zn). 3

That is to say, we can identify the torus with a (skewed and stretched)

square in R2 conforming to specific boundary conditions (namely, that

3Concretely, Γ is the set of linear combinations with integer coefficients of a basis
{e1, e2, . . . , en} of Rn.
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Figure 4.1.2: A fun illustration of how a torus may be created from a square in the
plane with periodic boundary conditions.

opposite sides of the square are the same). We call the torus with Γ = Zn
the standard torus.

When endowed with the product metric from S1 (i.e. the n-times

product of the canonical metric on S1), a torus is called the flat torus.4 As

the Laplacian is locally defined by the metric, the Laplacian of any flat

surface is the same as the Laplacian in Euclidean space, restricted to

functions that are well-defined on the surface.

Intuitively, the flat metric makes the torus look locally like Rn. Among

other things, this means that angles and distances work as one would

expect in Rn; for example, the interior angles of a triangle on a flat torus

add up to π degrees.

Example: Torus Embedded in R3 The flat metric is not the only

metric one can place on a torus. On the contrary, it is natural to picture a

torus embedded in R3, with the familiar shape of a donut (Figure 4.1.2).

The torus endowed with the metric induced from R3 is a different

Riemannian manifold from the flat torus.

The torus T embedded in R3 with minor radius (i.e. the radius of tube)

r and outer radius (i.e. the radius from center of hole to center of tube)

R > r may be parameterized as

T : [0, 2π)× [0, 2π)→ T2

T (θ, φ) = ((R+ r cos θ) cosφ, (R+ r cos θ) sinφ, r sin θ)

4In general, a manifold is said to be flat if it has zero curvature at all points. Examples
of other spaces commonly endowed with a flat metric include the cylinder, the Möbius
band, and the Klein bottle.
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The metric g inherited from R3 is

g = dx2 + dy2 + dz2

= d((R+ r cos θ) cosφ)2 + d((R+ r cos θ) sinφ)2 + d(r sin θ)2

= (dφ sinφ(−(r cos θ +R))− r cosφdθ sin θ)2

+ (dφ cosφ(r cos θ +R)− r sinφdθ sin θ)2 + r2dθ2 cos2 θ

= (R+ r cos θ)2dφ2 + r2dθ2

and so the corresponding matrix (gij) is

g(θ, φ) =

(
r2 1
1 (R+ r cos θ)2

)
The Laplacian of the torus embedded in R3 is then

∆f = − 1√
| det g|

n∑
i,j=1

(
gij
√
|det g| ∂

∂xj

)
(4.3)

= −r−2 (R+ r cos θ)−1 ∂

∂θ
(R+ r cos θ)

∂

∂θ
f − (R+ r cos θ)−2 ∂2

∂φ2
f

(4.4)

Whereas the distances and angles on the flat torus act similarly to those in

R2, distances and angles on the embedded torus act as we would expect

from a donut shape in R3. For example, the sum of angles of an triangle

drawn on a flat torus is always π, but this is not true on the torus

embedded in R3.5

More formally, the embedded torus is diffeomorphic to the flat torus but

not isomorphic to it: there exists a smooth and smoothly invertible map

between them, but no such map that preserves distances. In fact, there

does not exist a smooth embedding of the flat torus in R3 that preserves its

metric. 6

5A triangle drawn on the “inside” of the torus embedded in R3 has a sum of angles
that is less than π, whereas a triangle drawn on the “outside” has a sum of angles that
is greater than π. Although we will not discuss Gaussian curvature in this text, we note
that this sum of angles is governed by the curvature of the surface, which is negative on
the inside of the torus and positive on the outside. As another example, the sum of angles
of a triangle on the 2-sphere, which has positive Gaussian curvature, is 3π

2
.

6For the interested reader, we remark that it is known that there does not even exist a
smooth metric-preserving (i.e. isometric) C2 embedding of the flat torus in R3. However,
results of Nash from 1950 show that there does exist an isometric C1 embedding. In 2012,
the first explicit construction of such an embedding was found; its structure resembles that
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4.2 Lessons from Physics

We would be remiss if we introduced the Laplacian without discussing its

connections to physics. These connections are most clear for the Laplacian

on manifolds, which figures in a number of partial differential equations,

including the ubiquitous heat equation.

Example: Fluid Flow (Manifolds) Suppose we are physicists

studying the movement of a fluid over a continuous domain D. We model

the fluid as a vector field v. Experimentally, we find that the fluid is

incompressible, so div v = 0, and conservative, so v = −∇u for some

function u (the potential). The potential then must satisfy

∆u = 0

This is known as Laplace’s Equation, and its solutions are called harmonic

functions.

Example: Fluid Flow (Graphs) Now suppose we are modeling the

flow of a fluid through pipes that connect a set of reservoirs. These

reservoirs and pipes are nodes and edges in a graph G, and we may

represent the pressure at each reservoir as a function u on the vertices.

Physically, the amount of fluid that flows through a pipe is proportional

to the difference in pressure between its vertices, ui − uj . Since the total

flow into each vertex equals the total flow out, the sum of the flows along a

vertex i is 0:

0 =
∑
j∈N(i)

ui − uj (4.5)

Expanding this gives:

0 =
∑
j∈N(i)

uj −
∑
j∈N(i)

ui = deg(i)ui −
∑
j∈N(i)

uj

= ((D −A)u)i = (Lu)i

We find that Lu is 0, a discrete analogue to the Laplace equation ∆u = 0.

Equivalently, Equation 4.5 means that each neighbor is the average of its

of a fractal [16].
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neighbors:

ui =
1

deg(i)

∑
j∈N(i)

uj

We can extend this result from 1-hop neighbors to k-hop neighbors, by

noting that each of the 1-hop neighbors is an average of their own

neighbors and using induction.

While this result is obvious in the discrete case, it is quite non-obvious

in the continuous case. There, the analogous statement is that a harmonic

functions equals its average over a ball.

Theorem 4.2.1 (Mean Value Property of Hamonic Functions). Let

u ∈ C2(Ω) be a harmonic function on an open set Ω. Then for every ball

Br(x) ⊂ Ω, we have

u(x) =
1

|Br(x)|

∫
Br(x)

u(x) dx =
1

|∂Br(x)|

∫
∂Br(x)

u(x) dx

where ∂Br denotes the boundary of Br.

If one were were to only see this continuous result, it might seem

somewhat remarkable, but in the context of graphs, it is much more

intuitive.

For graphs, the converse of these results is also clear. If a function u on

a graph is equal to the average of its k-hop neighbors for any k, then the

sum in Equation 4.5 is zero, so Lu = 0 and u is harmonic. For manifolds, it

is also true that if u equals its average over all balls centered at each point

x, then u is harmonic.

Example: Gravity Written in differential form, Gauss’s law for gravity

says that the gravitational field g induced by an object with mass density ρ

satisfies

∇g = −4πGρ

where G is a constant. Like our model of a fluid above, the gravitational

field is conservative, so g = −∇φ for some potential function φ. We then

see

∆φ = 4πGρ

Generally, a partial differential equation of the form above

∆u = f
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is known as the Poisson equation.

Note that if the mass density is a Dirac delta function, meaning that all

the mass is concentrated at a single point, the solution to this expression

turns out to be φ(r) = −Gm/r, which is Newton’s law of gravitation.

Example: Springs Consider a graph in which each node exerts upon its

neighbors an attractive force. For example, we could imagine each vertex

of the graph as a point a 2D plane connected to its neighbors by a spring.

Hooke’s Law states that the potential energy of a spring is k
2x

2, where

x ∈ R2 is the amount the spring is extended or compressed from its resting

displacement. Working in the 2D plane, the length of the spring is the

difference ‖xi − xj‖ where xi = (xi, yi) and xj = (xj , yi) ∈ R2 are the

positions of the two nodes.

If the resting displacement of each spring is 0, the potential energy in

the (i, j) spring is k
2 ‖xi − xj‖2. The total potential energy of our system is

sum of the energies in each spring:∑
(i,j)∈E

k
2 ‖xi − xj‖2 ∝ xTLx+ yTLy

We see that finding a minimum-energy arrangement corresponds to

minimizing a Laplacian quadratic form. If we were working in R1 instead

of R2, the expression above would coincide exactly with our traditional

notion of the Laplacian xTLx.

Harmonic Functions As seen repeatedly above, we are interested in

harmonic functions, those for which L = 0. However, on a finite graph, all

such functions are constant!

We can see this from our physical system of springs with resting

displacement 0. Intuitively, if G is connected, the springs will continue

pulling the vertices together until they have all settled on a single point,

corresponding to a constant function. Alternatively, if xTLx = 0, then each

term (x(i)− x(j))2 in the Laplacian quadratic form must be 0, so x must

be constant on each neighborhood. Since G is connected, x(i) must then be

constant for all vertices i.

Nonetheless, all is not lost. Interesting functions emerge when we place

additional conditions on some of the vertices of the graph. In the case of

the spring network, for example, we can imagine nailing some of the
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Figure 4.2.1: An illustration of Tutte’s Theorem. On the left, we embed a graph
into the plane by placing its vertices at random positions. On the right, we show the
same graph embedded by taking one of its faces, nailing them in place, and letting
the others settle into an arrangement with minimal potential energy.

vertices onto specific positions in the 2D plane. If we let this system come

to equilibrium, the untethered vertices will settle into positions in the

convex hull of the nailed-down vertices, as shown in Figure 4.2.1.

In fact, a famous theorem of Tutte [97] states that if one fixes the edges

of a face in a (planar) graph and lets the others settle into a position that

minimizes the total potential energy, the resulting embedding will have no

intersecting edges.

Theorem 4.2.2 (Tutte’s Theorem). Let G = (V,E) be a 3-connected,

planar graph. Let F be a set of vertices that forms a face of G. Fix an

embedding F → R2 such that the vertices of F form a strictly convex

polygon. Then this embedding may be extended to an embedding V → R2 of

all of G such that

1. Every vertex in V \ F lies at the average of its neighbors.

2. No edges intersect or self-intersect.

The statements above all have continuous analogues. Like a harmonic

function on a finite graph, a harmonic function on a compact manifold

without boundary (a closed manifold) is constant.

Theorem 4.2.3. If f is a harmonic function on a compact boundaryless

region D, f is constant.

On a region with boundary, a harmonic function is determined entirely

by its values on the boundary.

52



Theorem 4.2.4 (Uniqueness of harmonic functions). Let f and g be

harmonic functions on a compact region D with boundary ∂D. If f = g on

∂D, then f = g on D.

As a result, if a harmonic function is zero on its boundary, it is zero

everywhere. This result is often stated in the form of the maximum

principle.

Theorem 4.2.5 (Maximum Principle). If f is harmonic on a bounded

region, it attains its absolute minimum and maximum on the boundary.

The maximum principle corresponds to the idea that if we nail the

vertices of the face of a graph to the plane, the other nodes will settle

inside of their convex hull; if every point is the average of its neighbors, the

maximum must be attained on the boundary.

Example: More Fluids Returning to continuous fluids, suppose we are

interested in understanding how a fluid evolves over time. For example, we

may be interested in the diffusion of heat over a domain D. This process is

governed by the ubiquitous heat equation:

∂tu(x, t) = ∆u(x, t)

One common approach to solving this equation is to guess a solution of the

form u(x, t) = α(t)φ(x) and proceed by separation of variables. This yields:

∆φ(x)

φ(x)
= −α

′(t)

α(t)

which implies that

α′ = −λα and ∆φ = λφ

for some λ ∈ R. The equation on the left yields α(t) = Ce−λt, and the

equation on the right shows that λ is an eigenvalue of ∆. This second

equation is called the Helmholtz equation, and it shows that the

eigenvalues of the Laplacian enable us to understand the processes it

governs. Note also that the Laplace equation is a special case of the

Helmholtz equation with λ = 0.

We discuss the heat equation (on both manifolds and graphs) in more

detail in section 4.5. Before doing so, we need to understand the

eigenvalues and eigenvectors of the Laplacian operator.
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4.3 The Laplacian Spectrum

Our primary method of understanding the Laplacian will be by means of

its eigenvalues, or spectrum.

We denote the eigenvalues of the Laplacians L and ∆ by λi, with

λ1 ≤ λ2 ≤ · · · . We use the same symbols for both operators, but will make

clear at all times which operator’s eigenvalues we are referring to. In the

graph case these are finite (L has n eigenvalues counting multiplicities),

whereas in the case of a manifold they are infinite.

We have seen that L and ∆ are self-adjoint positive-definite operators,

so their eigenvalues are non-negative. By the spectral theorem, the

eigenfunctions are orthonormal and form a basis for the Hilbert Space of

L2 functions on their domain. For a manifold M⊂ Rn, the eigenfunctions

form a basis for L2(M), and for a graph G = (V,E), they form a basis for

L2(V ) (i.e. bounded vectors in Rn).

We have also already seen that the constant function 1 is an

eigenfunction of the Laplacian corresponding to eigenvalue λ1 = 0.

Notation: Unfortunately, graph theorists and geometers use different

conventions for the eigenvalues. Graph theorists number the eigenvalues

λ1, λ2, . . . , with λ1 = 0, and prove theorems about the “second eigenvalue”

of the Laplacian. Geometers number the eigenvalues 0, λ1, . . . , and prove

theorems about the “first eigenvalue” of the Laplacian. We will use the

convention from spectral graph theory throughout this text.

Can you hear the shape of a drum? A famous article published in

1966 in the American Mathematical Monthly by Mark Kac asked “Can you

hear the shape of a drum?” [54] The sounds made by a drumhead

correspond to their frequencies, which are in turn determined by the

eigenvalues of the Laplacian on the drum (a compact planar domain). If

the shape of the drum is known, the problem of finding its frequencies is

the Helmholtz equation above. Kac asked the inverse question: if the

eigenvalues of the Laplacian are known, is it always possible to reconstruct

the shape of the underlying surface? Formally, if D is a compact manifold

with boundary on the plane, do the solutions of ∆u+ λu = 0 with the

boundary condition u|∂D = 0 uniquely determine D?

The problem remained unsolved until the early 1990s, when Gordon,

Webb and Wolpert answered it negatively [41]. The simple counterexample
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Figure 4.3.1: The two domains on the left have the same Laplacian spectrum, but
are not isomorphic. The same is true of the two graphs on the right.

they presented is shown in Figure 4.3.1.

Nonetheless, the difficulty of proving this fact demonstrates just how

much information the eigenvalues contain about the Laplacian. Indeed,

Kac proved that the eigenvalues of ∆ on a domain encode many geometric

properties, including the domain’s area, perimeter, and genus.

Similarly, it is not possible to reconstruct the structure of a graph from

the eigenvalues of its Laplacian (Figure 4.3.1).7

4.3.1 Examples of Laplacian Spectra

Below, we give examples of the eigenvalues and eigenfunctions of a number

of the manifolds and graphs from subsection 4.1.2.

Example: Cn and Rn In Cn, the eigenvalue equation ∆f = λf for the

standard Laplacian ∆ = −
∑n

i=1
∂2

∂x2i
, is satisfied by the complex

exponentials. In other words, the eigenfunctions of ∆ are the functions

x 7→ ei
√
λxi for any λ ≥ 0, where λ = 0 corresponds as usual to the constant

function.

In Rn, both the real and imaginary parts of the complex exponentials

satisfy −
∑n

i=1
∂2

∂x2i
f = λf . These are sine and cosine functions of the form

sin(
√
λxi) and cos(

√
λxi), and as above every real λ in the continuous

region [0,∞) is an eigenvalue.

7Also, if graphs with identical spectra were isomorphic, we would have a polynomial
time solution to the graph isomorphism problem, the problem of determining whether
two finite graphs are isomorphic. The graph isomorphism problem is neither known to be
solvable in polynomial time nor known to be NP-complete.
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Example: S1 The circle S1, which inherits its metric from R2, looks

locally like R1 but is globally periodic. The spectrum of its Laplacian are

the functions on S1 that solve

− ∂2

∂θ2
i

f = λf (4.6)

which is to say they are the solutions to this equation in R1 that are also

periodic with period 2π. These solutions take the form

f(θ) = eikθ

for k ∈ Z. The real and imaginary parts of this expression yield the full set

of eigenfunctions

f(θ) = 1, f(θ) = sin(kθ), f(θ) = cos(kθ), for k = {1, 2, . . . }

with corresponding eigenvalues 0, k2, k2 for k ∈ {1, 2, . . . }.
From another perspective, S1 is locally like R1, so a sine/cosine wave

with any wavelength locally satisfies Equation 4.6, but in order for it to be

well-defined globally, its wavelength must be a multiple of 2π.

Consequently, whereas the spectrum of ∆ in R1 is continuous, the

spectrum of ∆ in S1 is discrete. Consistent with this intuition, one can

prove that all closed manifolds have discrete spectra, whereas non-compact

manifolds may have continuous spectra.

Additionally, consider a circle with a non-unit radius r. From polar

coordinates, we can see that the Riemannian metric is g = r dθ and the

Laplacian becomes

∆f = −1

r

∂

∂r

(
r
∂f

∂r

)
− 1

r2

∂2f

∂θ2

which has eigenvalues 0, k2, k2 for k ∈ {1, 2, . . . }. As we increase the radius

of our circle, we see that the spectrum becomes more dense in R, and as it

goes to infinity, we fill the entire region [0,∞), which is the spectrum of R1.
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Example: Cycle Graph As computed above, the Laplacian of the

cycle graph is given by

L =



2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1
. . .

. . . 0 0

0 0
. . .

. . . −1 0
0 0 0 −1 2 −1
−1 0 0 0 −1 2


In Figure 4.3.2, we compute its eigenfunctions numerically for n = 30 and

100 vertices and plot the first six eigenfunctions. Comparing these to the

plots of the eigenfunctions of the cycle graph, we see that the (scaled)

eigenfunctions of the cycle graph approach those of the circle!

In this way, the cycle graph is a discrete version of a circle.

Example: Flat Torus We saw previously that with the flat metric, the

n-dimensional torus looks like a linearly transformed square in Rn with

periodic boundary conditions. Formally, we have Tn = Rn/Γ for an

n-dimensional lattice Γ generated by a basis {e1, . . . , en} of Rn.

To compute its eigenvalues, let Γ∗ be the dual lattice, defined as

{x ∈ Rn : 〈x, y〉 ∈ Z∀y ∈ Γ}. Just as with the other flat manifolds (aRn
and S1) above, the solutions to eigenvalue equation ∆f = λf solve∑n

i=1
∂2

∂x2i
f(x) = λf , so they are complex exponentials:

x 7→ e2πi〈x,y〉 for all y ∈ Γ

The real and imaginary parts yield the eigenfunctions 1, x 7→ sin(2πi〈x, y〉),
x 7→ cos(2πi〈x, y〉) for y ∈ Γ∗, which form a basis for L2(Tn). The

corresponding eigenvalues are 0, 4π2|y|2, 4π2|y|2, similar to those on the

circle S1.

Example: Embedded Torus We computed the Laplcaian of the

2-torus with the metric induced from R3, rather than the flat metric, in

Equation 4.4. Its eigenvalue equation is then

∆f = −r−2 (R+ r cos θ)−1 ∂

∂θ
(R+ r cos θ)

∂

∂θ
f − (R+ r cos θ)−2 ∂2

∂φ2
f = λf
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Circle Cycle Graph Cycle Graph

Figure 4.3.2: An illustration comparing the first six eigenfunctions of the circle and
the cycle graph with n = 30, 100.
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As this equation is separable, we consider a solution of the form

ψ(θ, φ) = a(θ)eikφ for k ∈ {1, 2, . . . }. Simplifying, we obtain

− 1

r2
a′′(θ) +

sin θ

r +R cos θ
a′(θ) +

k2

(r +R cos θ)2
a(θ) = λa(θ)

which is an ordinary differential equation in a with periodic boundary

conditions, solvable for given values of r and R. Note that each

non-constant eigenvalue has multiplicity at least 2, corresponding to the

real and imaginary parts of eikφ, as with the flat torus and the circle.

Example: More Fundamental Graphs Recall from Figure 4.1.1 the

Laplacians of the fully connected graph and the star graph on n vertices.

The eigenvalues of the complete graph, apart from λ1 = 0, are n with

multiplicity n− 1. As we shall see shortly, a graph’s eigenvalues tell us

about its connectedness, and the fully-connected graph has the largest

eigenvalues.

The star graph has eigenvalues λ1 = 0, λn = n, and λi = 1 for 1 < i < n.

Note that the second eigenvector, λ2, is small. The graph is connected, but

is “close” to being disconnected in the sense that if the middle vertex were

removed, it would be entirely disconnected.

A star graph is an instance of a complete bipartite graph: its vertices

can be divided into two subsets such that each vertex is connected (only)

to the vertices of the other subset. In general, denoting by Km,n the

complete bipartite graph with subsets of size m and n−m, the Laplacian

LKm,n has eigenvalues 0, n, m, and n+m with multiplicies 1,m− 1, n− 1,

and 1, respectively.

This result is a consequence of the following key lemma.

Lemma 4.3.1. Let G be a simple graph. Let G be its complement, the

graph on the same vertices as G such that each edge is included in G if and

only if it is not in G. Denote the eigenvalues of the Laplacian LG of G by

0 = λ1 ≤ · · · ≤ λn. Then the eigenvalues of the Laplacian LG of G are

0, n− λn, n− λn−1, . . . , n− λ2

Proof. Let v1, . . . , vn be orthonormal eigenvectors of LG corresponding to
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λ1, . . . , λn. The sum of the Laplacians of G and G is

LG + LG = DG −AG +DG −AG = (DG +DG)− (AG +AG)

= nI − J

where J is the matrix of all 1s. Now consider LGvi. If vi is the constant

vector, LGvi = 0. If it is not constant, it is orthogonal to the constant

vector, so Jvi = 0 and

LGvi = (nI − J − LG)vi = nvi − 0− λivi = (n− λi)vi

Therefore the eigenvalues of LG are 0, n− λn, n− λn−1, . . . , n− λ2. Also,

its set of eigenvectors is the same as that of LG.

From this lemma, it is quick to deduce the eigenvectors of the complete

graph and Km,n. The complete graph is the complement of the empty

graph, which has eigenvalues 0(n), so its eigenvalues are 0, n(n−1). Km,n is

the complement of the union of two complete graphs on n and m vertices.

It is simple to show that the eigenvalues of the union of two graphs is the

union of their eigenvalues, so the eigenvalues of the union are

0(2), n(n−1),m(m−1). Then by the lemma the eigenvalues of Km,n are

0, n(m−1),m(n−1), n.

Moreover, since the eigenvalues of every graph are nonnegative, the

lemma shows that n is the largest that an eigenvalue of a graph with n

vertices can be. In this way, the complete graph has the largest eigenvalues.

4.3.2 A Note on Boundaries

Before proceeding, we take a moment to address the concept of manifolds

with boundary, as the reader likely has or will encounter such structures in

the Riemannian geometry literature. We emphasize that finite graphs are

analogous to closed (i.e. compact and boundaryless) manifolds, rather than

those with boundary. A number of results in this text hold for manifolds

with boundary and noncompact manifolds, but we make no guarantees.

For manifolds with boundary, the eigenfunctions of the Laplacian

depends on both the underlying domain and the conditions placed on the

boundary. For example, Kac’s original “shape of a drum” question

specified the boundary condition u|∂D = 0. This condition is the first of

the two most widely-studied boundary conditions, Dirichlet boundary
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conditions and Neumann boundary conditions.8

Dirichlet boundary conditions require that the function be zero on its

boundary:

∆u = λu on D, u|∂D = 0

Neumann boundary conditions require that the function’s derivative be

zero on its boundary:

∆u = λu on D,
∂u

∂ν
|∂D = 0

where ν is the unit outward normal to ∂D.

To use the example of heat flow, Dirichlet boundary conditions

correspond to a closed system in which no heat is allowed to enter or leave

the system, whereas Neumann boundary conditions correspond to a system

with a constant flow of heat at each point in the boundary.

These two types of boundary conditions only have graph analogues in

the setting of infinite graphs. On finite graphs, fixing the value of a set of

vertices determines a unique solution to ∆f = λf . Analogues of Dirichlet

and Neumann boundary-value problems on infinite graphs is an active area

of research [43, 50].

4.3.3 The Rayleigh Characterization of Eigenvalues

There are many ways of characterizing the eigenvalues of an operator. One

particularly useful characterization is the Rayleigh quotient, which enables

us to express eigenvalues as the solutions to optimization problems.

We begin in the setting of graphs. Let A be a self-adjoint matrix with

eigenvalues λ1 ≤ · · · ≤ λn. The Rayleigh quotient of a vector x is the

expression

R(x) =
xTAx

xTx

where the denominator functions as a normalization factor. The

Courant-Fischer Theorem states that λ1 minimizes this expression over all

nonzero x, λ2 minimizes it over all x orthogonal to the first eigenvector, λ2

maximizes it over x orthogonal to the first two eigenvectors, and so on.

8Although less common, other types of boundary conditions include Robin, Mixed, and
Cauchy conditions. Each of these is different a combination of Dirichlet and Neumann
boundary conditions (Robin is a linear combination, Mixed is a piecewise combination,
and Cauchy imposes both at once).
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Theorem 4.3.1 (Courant-Fischer). The k-th smallest eigenvalue λk of the

self-adjoint matrix A is given by

λk = min
S⊂R,dim(S)=k

max
x∈S,x6=0

xTAx

xTx
(4.7)

where S is a subspace of Rn.

The proof of Courant-Fischer is an application of the famous Spectral

Theorem (for the details, see [89], Chapter2).

For a Laplacian L of a graph G, the first eigenvalue λ1 = 0 corresponds

to the constant vector 1. We then immediately have what is known as the

Rayleigh characterization of λ2.

Corollary 2. The first nonzero eigenvalue λ2 of L is given by

λ2 = min
‖x‖2=1,x⊥1

xTLx

In what should not be an enormous surprise at this point, the Rayleigh

quotient has an analogue on manifolds:

R(f) =

∫
M |∇f |

2 dV∫
M f2 dV

=
〈∇f,∇f〉
〈f, f〉

where dV is the volume form on the manifold. The eigenvalues are given

by the same optimization problem:

λ1 = 0, λ2 = min

{
R(f) :

∫
M
f dV = 〈f,1〉 =

∫
M
f dV = 0

}
The first eigenvalue is 0, corresponding to a constant eigenfunction, and

the next largest eigenvalue is the minimizer of the Rayleigh quotient over

all functions orthogonal to a constant function.9 Subsequent eigenvalues

λ3, λ4, . . . of M may be obtained by a similar process as in the graph case.

λk = min {R(f) : 〈f, fi〉 = 0 ∀ i < kfi}

where fi denotes the eigenfunction corresponding to the i-th eigenvalue λi.

9Technically, this minimization is taken over all functions f in the Sobolev spaceH1(M)
corresponding to M.
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4.4 Eigenvalues and Connectivity

The Laplacian spectrum is closely related to the notion of connectedness.

4.4.1 The First Eigenvalues

The multiplicity of the first (zero) eigenvalue of the Laplacian gives the

number of connected components of its corresponding graph or manifold.

Lemma 4.4.1. The number of connected components of a graph G equals

the multiplicity of the 0 eigenvalue of L.

Proof. First, suppose f is an eigenfunction of L corresponding to 0. Then

fLf =
∑

(i,j)∈E(f(i)− f(j))2 = 0. In order for this sum to be 0, if f is

nonzero on a vertex v, it must take the same value on every vertex

connected to v. Then f must be constant on each component, meaning the

multiplicity of the eigenvalue 0 is at most the number of connected

components.

Second, note that for each connected component of the graph, the

characteristic function of the component is an eigenfunction, so the

multiplicity of the eigenvalue 0 is at least the number of connected

components.

For simplicity, we assume from now on that the graphs/manifolds we are

discussing are connected, so λ1 has multiplicity 1.

The second eigenvector λ2 tells us about the connectivity of the graph or

manifold in a different way from λ1. Whereas λ1 tells us whether the graph

is connected at all, λ2 gives us a sense of how connected the graph is.

Informally, if λ2 is small, then the graph is weakly connected, whereas if λ2

is large, the graph is strongly connected. We have already seen one

example of this idea above: a graph is fully connected if and only if λ2 is as

large as possible (λ2 = n).

Graph theorists call λ2 the algebraic connectivity of a graph. It is also

sometimes referred to as Fiedler value for Czech mathematician Miroslav

Fiedler, who was among the first to give bounds on λ2.

Geometers call λ2 the fundamental tone of a manifold. This name is

derived from the fact that if we imagine a vibrating manifold, λ2 is its

leading frequency of oscillation.
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4.4.2 Eigenvalue Bounds

We have seen that we can understand the structure of graphs and manifolds

by looking at the eigenvalues of their Laplacians. In general, however, it is

challenging to obtain analytic expressions for these eigenvalues.

Instead, most work is dedicated to proving and tightening bounds on

these eigenvalues. The Rayleigh characterization of eigenvalues is useful

because it gives us a simple method of obtaining an upper bound on λ2:

for any f , the Rayleigh quotient 〈f,Lf〉〈f,f〉 bounds λ2.

Here, we give bounds on the eigenvalues derived from simple properties

of graphs and manifolds. We will build up to a proof of Cheeger’s

Inequality, a bound on λ2 that was first proven on manifolds, but has

recently seen widespread use in graph theory.

Theorem 4.4.1. Let G be a simple connected graph.

1. λn ≤ n with equality if and only if the complement G is disconnected.

2.
∑n

i=1 λi =
∑

v∈V dv = 2|E

3. λ2 ≤ n
n−1 minv∈V dv and λn ≥ n

n−1 maxv∈V dv

4. λn ≤ maxi∈V (di +m(i)) where m(i) is the average of the degrees of

vertices adjacent to vertex i.

Proof. 1. From Lemma 4.3.1, the eigenvalues of G are 0, λ2, . . . , λn,

those of G are 0, n− λn, . . . , n− λn. The eigenvalues of G are

nonnegative, so λi ≤ n. As shown above, 0 has multiplicity greater

than 1 in G if and only if G is disconnected, so n is an eigenvalue of

G if and only if G is disconnected.

2. The sum of the eigenvalues of an operator equals its trace, and the

trace of L = D −A is the same as the trace of D, which is the sum of

the degree of each vertex:
∑

v∈V dv.

3. This result is due to Fielder [34]. For a proof, see Appendix A.1.2.

4. This result is due to Merris [71], building off a result from Anderson

and Morley [3]. For a proof, see Appendix A.1.2.

64



Another way of seeing the connection between the Laplacian spectrum

and graph connectivity is to observe how they behave as one changes the

graph. In particular, if one adds an edge to the graph, the eigenvalues only

increase.

Theorem 4.4.2 (Edges Increase Eigenvalues). Let G be a non-complete

graph and (i, j) an edge not in E. Denote by G′ the graph G with edge

(i, j) added. Then the eigenvalues of G′ interlace those of G:

0 = λ1(G) = λ1(G′) ≤ λ2(G) ≤ λ2(G′) ≤ λ3(G) ≤ · · · ≤ λn(G) ≤ λn(G′)

The proof of this theorem is included in Appendix A.1.3.10 It is closely

related to Cauchy’s Interlace Theorem and Weyl’s Theorem, two corollaries

of the Courant-Fischer Theorem. It also gives us another way of seeing

that the complete graph has the largest eigenvalues.

These types of interlacing results are an active area of research. The

theorem above covers the case of edge addition; analagous results on vertex

addition, edge subdivision, and vertex contraction may be found in [76].

For manifolds, bounds on the eigenvalues of ∆ are often more

challenging to prove than their graph counterparts. A well-known result of

Lichnerowicz and Obata bounds λ2 in terms of the Ricci curvature. We

will not give a proof, but state it here for readers more familiar with

Riemannian geometry.

Theorem 4.4.3 (Lichnerowicz-Obata). Suppose M is a compact

n-dimensional Riemannian manifold with Ricci curvature satisfying the

positive lower bound Ric(M) ≥ (n− 1)K. Then

λ2(M) ≥ nK

with equality if and only if M is isometric to the sphere Sn(1).

Without the curvature condition of Lichnerowicz-Obata, it is possible for

the second eigenvalue of a closed manifolds to be arbitrarily small. In the

following example, we construct a dumbbell-shaped object with positive

size and arbitrarily small λ2.

Example: Cheeger’s Dumbbell Consider two spheres of volume V

connected by a small cylinder of radius ε and length 2L. Let f be the

10The proof involves background (complex analysis) beyond the expected background
of the reader. Nevertheless, we encourage adventurous readers to give it a look!
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function that is 1 on the first sphere, −1 on the second sphere, and linearly

decreasing on the cylinder. The gradient of f has norm 1/L and is 0

otherwise. Note that
∫
M fdV = 0. The Rayleigh quotient of f is then∫

M
|∇f |2dV =

L2

2V
vol(C)

which goes to 0 as ε→ 0. This quantity upper bounds λ2, so λ2 may be

made arbitrarily small on a manifold of volume at least 2V .

4.4.3 Bounds and Boundaries

The Laplacian and its eigenvalues are intimately connected to the

boundaries of subsets of the graph. To express this connection, we need a

few more definitions.

Let G be a graph and S ⊂ V be a subset of the vertices of G. We say

that the size of the boundary of S is the number of edges between vertices

in S and those in G \ S.

Define the conductance of a subset S ⊂ V of vertices to be the size of its

boundary ∂S relative to the size of the subset (or the size of its

complement, whichever is smaller):

hG(S) =
|∂S

min(|S|, |G \ S|)

Define the conductance of a graph, also called the Cheeger constant of G,

to be the minimum conductance of any subset:

h(G) = min
S⊂V

hG(S)

Switching to the manifold case, let M be a closed n-dimensional

manifold. The boundary of an n-dimensional submanifold S ⊂M is

(n− 1)-dimensional. For ease of notation, we write vol(·) to denote the

volume of an n-dimensional submanifold and area(·) denote the volume of

an (n− 1)-dimensional region.

Consider a smooth (n− 1)-dimensional submanifold B ⊂M that divides

M into two disjoint submanifolds S and T . Let

hM(B) =
area(B)

min(vol(S), vol(T ))
= min

S⊂M:0≤vol(S)

area(∂S)

min(vol(S), vol(M \ S))
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analogous to hG above. Also let

h(M) = min
S⊂M

hM(S)

where the minimum is taken over submanifolds S of the form above. We

call h(M) the Cheeger isoperimetric constant or simply the Cheeger

constant of M.

Cheeger’s Inequality

Cheeger’s inequality is a celebrated result that bounds the conductance of

a graph or manifold in terms of λ2. It is named for geometer Jeff Cheeger,

who formulated and proved the result for manifolds.

Theorem 4.4.4 (Cheeger’s Inequality for Graphs). For an unweighted

d-regular graph,

h(G) ≤
√

2dλ2

Theorem 4.4.5 (Cheeger’s Inequality for Manifolds). For a closed

manifold M,

h(M) ≤
√

2λ2

The most remarkable thing about these two theorems is how similar

their proofs are — the proofs are essentially identical! I have included

them, as adapted from a brilliant blog post by Luca Trevisan [94], in

Appendix A.1.4.

Measuring Boundaries

We now explore how the Laplacian can be used to measure the size of

boundaries.

Starting with the graph case, let 1S be the characteristic function (i.e.

indicator) of a subset S ⊂ V :

1S(v) =

{
1 v ∈ S
0 v 6∈ S

Observe that the size of the boundary may be measured by

|∂S| =
∑

(i,j)∈E

|1S(i)− 1S(j)| (4.8)
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because this sum simply counts edges between S and G \ S.

Turning to the manifold case, let S ⊂M be a n-dimensional

submanifold and let 1S be its characteristic function. The analogous

statement to 4.8 above would be

|∂S| =
∫
M
|∇1S | dV (4.9)

but the indicator function is not differentiable on ∂S ⊂M, so this

expression does not make sense!

If it did make sense, we see that it would be consistent with the

well-known coarea formula. This formula states that for a Lipschitz

function u and an L1 function g,∫
M
g(x)|∇u(x)| dx =

∫
R

(∫
u−1(t)

g(x) dVn−1(x)

)
dt (4.10)

Naively substituting u = 1S and g = 1 into this formula gives Equation 4.9.

Of course, 1S is not Lipschitz, so this substitution is not justified.

It turns out that it is possible to formally justify Equation 4.9, but doing

so requires the machinery of distribution functions. We informally discuss

how this is done in the following section on the Laplacian of the indicator.

The Laplacian of the Indicator

The Laplacian of the indicator function, written ∆1S , is a generalization of

the derivative of the Dirac delta function. Intuitively, ∆1S is infinitely

positive on the inside of the boundary of S, infinitely negative on the

outside of the boundary of S, and zero on S \ ∂S. Formally, it is a

distribution function, which is to say that it is only defined in the integrand

of an integral, where it integrates to a (generalized) Dirac delta function.

For a function f :M→ R, integrating ∆1Sf(x) gives:∫
M

∆1Sf(x)dV =

∫
M

1S∆f(x)dV

=

∫
S

∆f(x)dV =

∫
S
−div∇f(x)dV

=

∫
∂S

(−n · ∇f)(x)dS
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where the first inequality follows from the properties of the Laplacian and

the second inequality follows from the divergence theorem. This last

integral is called the surface delta function, as it generalizes the Dirac delta

function. For this reason, the Laplacian of the indicator is also sometimes

called the surface delta prime function.

In practice, the Dirac delta function is often approximated as the limit

of smooth bump functions. In the same way, the Laplacian of the indicator

is approximated as the limit of the Laplacian of smooth step functions

converging to the indicator function on S.

Example: Smooth Approximation of ∆1 on S1 Since the last two

sections were relatively abstract, at this point it may be useful to give a

concrete example.

Consider the manifold S1, viewed as the unit interval [0, 1] with periodic

boundary conditions and the canonical metric. Suppose we are interested

in calculating the size |∂D| of a segment D whose length is four-fifths of

that of the circle. That is, let D be the region [0.1, 0.9], so S1 \D =

[0, 0.1) ∪ (0.9, 1]. Figure 4.4.1 (top) shows a diagram of our region.

We will create a family of smooth approximations ψt, indexed by a

parameter t, to the indicator function 1D. We create ψt using the sigmoid

function

σt(x) = (1 + e−x·t)−1

which converges to 1x≥0 as t→∞. Adding two copies of σt and reflecting

over the line 0.5 to ensure periodicity, we have

ψt(x) = σt(5(1− x)− 0.5) + σt(5x− 0.5)

Plots of ψ for different values of t are shown in Figure 4.4.1 (bottom). As

t→∞, ψi becomes 1D.

To measure ∂D, we can now compute∫ 1

0
|∂xψt(x)| dx

Results of numerical integration using Mathematica for different value of t

are displayed in Figure 4.4.1 (bottom). As t→∞, this quantity

approaches 2, which is correct as |∂D| = |{0.1, 0.9}| = 2.
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Indicator Function of a Segment of the Circle

Smooth Approximation of the Indicator

Figure 4.4.1: Above, an illustration of the indicator function of a segment of a cir-
cle. Below, graphs of smooth approximations ψt to the indicator for t = 3, 10, 30. As
t grows large, the integral of |∂xψt(x)| approaches |∂D| = 2.
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4.5 The Heat Kernel

We finish this chapter with a short discussion of the heat equation, the

classical motivation for the study of the Laplacian. The heat kernel is the

key tool of our main proof in Theorem 5.4.1.

We begin with the manifold variant of the heat equation and then

discuss the graph variant.

4.5.1 Manifolds

Let M be a closed manifold with measure µ. Define the heat operator

L : C2(M)× C1((0,∞)) by

L = ∆ + ∂t

Let F (x, t) and f(x) be functions on M× (0,∞) and M, respectively. The

heat equation is the partial differential equation

Lu(x, t) = F (x, t)

u(x, 0) = f(x)

If F (x, t) = 0, we have the homogenous heat equation

Lu(x, t) = 0

u(x, 0) = f(x)

Theorem 4.5.1. A solution to the homogeneous heat equation is unique.

See Appendix A.1.5 for the proof.

A fundamental solution to the heat equation is a function

p :M×M× (0,∞)→ R that is C2 onM×M and C1 on (0,∞) such that

Lyp = 0, lim
t→0

p(·, y, t) = δy

where δy is the Dirac delta function. Fundamental solutions may be shown

to be unique and symmetric in x and y.

For t > 0, define the heat propagator operator e−t∆ : L2(M)→ L2(M)

as

e−t∆f(x) =

∫
M
p(x, y, t)f(y) dµ(x)
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The heat propagator may be thought of as the solution to the heat

equation with initial condition f(x). The following theorems state some of

its properties; in essence, e−t∆ behaves as if it were simply an

exponentiated function.

Theorem 4.5.2. The heat propagator satisfies:

1. e−t∆ ◦ e−s∆ = e−(s+t)∆

2.
(
e−∆

)t
= e−t∆

3. e−t∆ is a positive, self-adjoint operator.

4. e−t∆ is compact.

Theorem 4.5.3. As t→ 0, e−t∆ 7→ IdL2, the identity operator in L2(M).

Theorem 4.5.4. As t→∞, e−t∆ converges uniformly in L2 to a constant

function (a harmonic function if M is not closed).

The next theorem reveals the fundamental connection between the heat

equation and the Laplacian spectrum.

Theorem 4.5.5 (Sturm-Liouville decomposition). Denote the eigenvalues

and eigenfunctions of the Laplacian ∆ by λ1 ≤ λ2 ≤ · · · and φ1, φ2, . . . ,

respectively. Then

p(x, y, t) =

∞∑
i=0

e−λitφi(x)φi(y)

See Appendix A.1.5 for the proof.

4.5.2 Graphs

Having developed our heat operator toolkit on manifolds, we now look at

the heat kernel on graphs. In what follows, for ease of notation, we work

with the normalized Laplacian L = D−1/2LD−1/2 rather than L.

For a graph G, we define the heat kernel Ht to match the form e−t∆:

Ht = e−tL
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analogously to the Sturm-Liouville decomposition, it may also be written

as a sum of outer products,

Ht = φe−tΛφT =

|V |∑
i=1

e−tλiφiφ
T
i

where λi and φi are the eigenvalues and eigenvectors of the L.

For t near 0, Ht ≈ I − Lt by a Taylor series expansion; the heat kernel

depends only on the graph’s local structure. In the limit t→ 0, it

converges to the identity function, as in Theorem 4.5.3 on manifolds.

Another way of understanding the heat kernel on graphs is to see it as

defining a continuous-time random walk. A standard (discrete-time)

random walk on G is defined by the random walk matrix P ,

Pij =

{
1/di (i, j) ∈ E
0 otherwise

The entries Pij of P may be regarded as the probability of moving i→ j at

any time step. For a distribution v over vertices at time t = 0, the entries of

(P tv)i may be regarded as the probability of being at vertex i after time t.

By a Taylor expansion, the heat kernel Ht may be written as

Ht = e−tL = e−t
(
I + IP +

IP

2!
+ · · ·

)
=

∞∑
k=0

tke−t

k!
P k

In this way, it describes a random walk with Pois(1) distributed waiting

times.
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5
Manifold Regularization

This chapter presents manifold regularization, a regularization technique

that unites the ideas introduced in the previous four chapters.

5.0.1 Background

Introduced by [11] in 2004, manifold regularization gained attention from

machine learning practitioners and theoreticians throughout the mid-late

2000s and early 2010s. It was first grounded in a rigorous theory by [10],

who justified the use of the data graph Laplacians by proving that, in the

limit of infinite data, they converge to data manifold Laplacians. One of

the primary objectives of this chapter is to give a clear exposition of this

proof using the tools of heat kernels.

A large body of work has emerged around manifold regularization

applications and theory in the last decade. Applications include web image

annotation, face recognition, human action recognition, and multitask

learning [67]. Theoretical analyses have investigated the extent to which

the discrete approximations used in manifold regularization (i.e. operators

on graphs) conform with the continuous objects that motivate them (i.e.

operators on manifolds).
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(a)  Labeled Data (b)  Labeled + Unlabeled Data (c)  Labeled + Unlabeled Data

Figure 5.1.1: A toy example illustrating how the shape of our data can change how
we see a binary classification problem.

5.0.2 Organization

This chapter is organized as follows. First, we motivate manifold

regularization using a toy example and give its formal definition. Second,

we present the two representer theorems due to [11] that characterize the

solutions to manifold-regularized learning problems. Third, we give

examples of two manifold-regularized learning algorithms (Laplacian RLS,

Laplacian SVM). Fourth, we discuss the convergence of the graph

Laplacian, which provides a theoretical underpinning to

manifold-regularized learning. Finally, we give an overview of recent

research in the field and discuss potential directions for future work.

5.1 Manifold Regularization

Consider the toy example presented in Figure 5.1.1. It consists of points in

the 2D plane, two of which have labels (shown as red and blue). Suppose

we wish to perform binary classification, which is to say separate the plane

into two regions corresponding to the two classes.

If we only consider the labeled data (2 points), our notion of a natural

classification function (Figure a) is a straight line, a smooth function in the

extrinsic space (R2). However, if we add unlabeled data (Figures b and c),

our notion of a natural classification function changes to one that is

smooth in the intrinsic space (the data manifold). The shape of our data (b

vs c) determines the natural classification function.

More generally, suppose we have a learning problem with NL labeled

examples and NU unlabeled examples: S = {(xi, yi)}NLi=1 ∪ {xi}
NL+NU
i=NL

, for

xi ∈ X and yi ∈ Y . We assume the data xi are drawn independently from

a probability distribution ρX supported on a Riemannian manifold M.
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Manifold regularization adds a term to the loss function that penalizes

functions which are more complex with respect to the intrinsic geometry of

the data manifold M:

L(f, x, y) = Lsup(y, f(x)) + γK ‖f‖2K + γIRI(f) (5.1)

where ‖f‖2K is standard (extrinsic) Tikhonov regularization term, RI(f) is

a new intrinsic regularization term. This intrinsic term captures the

intuition that our functions should be smooth on the manifold, not just

smooth in the extrinsic space.

The constants γK and γI determine the strength of extrinsic and

intrinsic regularization, respectively. Note that whereas the extrinsic term

is data-independent (i.e. it depends only on f), the intrinsic term depends

the data (x) by means of the data manifold.

As seen throughout the last chapter, we can measure the smoothness of

a function f on M by the Dirichlet energy, the integral of the Laplacian

quadratic form:

RI(f) =

∫
M
‖f‖2I dρX

Our objective is then:

L(f, x, y) = Lsup(y, f(x)) + γK ‖f‖2K + γI

∫
M
‖∇f(x)‖ dρX(x) (5.2)

Clearly, given only finite data, we cannot compute the intrinsic term

exactly. The key idea of manifold regularization is to approximate this

term by replacing the manifold with a graph approximation.

Suppose we construct a graph G, called a data graph, that approximates

the data manifold M. For example, we may take G to be the k-nearest

neighbors graph (subsection 5.3.1), where each data point xi is connected

by an edge to its k nearest neighbors.

Substituting the Laplacian L of G for the Laplacian ∆M of M, the

intrinsic term becomes computable:

RI(f) =
1

(NU +NL)2
f(x)TLf(x) ≈

∫
M
f(x)∆Mf(x) dρX(x) (5.3)

where f(x) denotes the vector (f(x1), . . . , f(xn)). Alternatively, expressed
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in summation notation, we have:

RI(f) =
1

(NU +NL)2

N∑
i=0

∑
r∈N(xi)

wir(f(xi)− f(xr))
2 (5.4)

where wij is the weight on edge (i, j) if the data graph is weighted, and

wij = 1 if the data graph is unweighted.

Substituting RI(f) back into Equation 5.1 gives the final loss function

NL∑
i=0

Lsup(yi, f(xi)) + γK ‖f‖2K +
1

(NU +NL)2
f(x)TLf(x) (5.5)

for an arbitrary supervised loss function Lsup.

In summary, the manifold regularization framework has three steps:

1. Construct a graph from one’s data (subsection 5.3.1)

2. Calculate the Laplacian L of the data graph: L = D−W

3. Optimize the regularized objective function:

f̂ = arg min
f∈HK

NL∑
i=0

Lsup(yi, f(xi)) + γK ‖f‖2K +
1

(NU +NL)2
f(x)TLf(x)

5.2 Representer Theorems

Now that we can compute our loss function, we are left with the task of

optimizing it. Fortunately, as in the case of Tikhonov regularization, we

can characterize the form of the optimal solution f∗.

In this section we state and prove two representer theorems: one for the

manifold case of Equation 5.2 and one for the graph case of Equation 5.5.

We follow the original proofs given in [11].

The standard Representer Theorem (Theorem 3.3.1) expresses the

minimizer of a Tikhonov-regularized loss function in terms of the kernel

functions evaluated at the data points x. The following manifold

regularized extensions are due to [11].

Theorem 5.2.1 (Manifold Regularization Representer Theorem).

Assuming the intrinsic norm ‖·‖I satisfies a smoothness condition
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(Equation 5.10), the minimizer f∗ of Equation 5.2 takes the form:

f∗(x) =

NL∑
i=1

aiK(xi, x) +

∫
M
a(y)K(x, y) dρX(y) (5.6)

Theorem 5.2.2 (Graph Regularization Representer Theorem). The

minimizer f∗ of Equation 5.5 takes the form:

f∗(x) =

NL+NU∑
i=1

aiK(xi, x) (5.7)

The remainder of this section is dedicated to proving these theorems,

beginning with the manifold case.

Idea: The proof is structured as follows. We use an orthogonality

argument to show that we can write f∗ as the sum of two quantities. The

first, corresponding to the first two terms in Equation 5.2, will be a

weighted sum of the kernel function at the data points:

NL∑
i=1

aiK(xi, x)

The second, corresponding to the intrinsic term in Equation 5.2, will take

the form of a sum
∑

i aiei over basis vectors ei, where the ai depend on a

differential operator D. A series of lemmas will show that if D is bounded,

this sum lies in the span of the integral operator IK , and so it may be

written in the form: ∫
M
a(y)K(x, y) dρX(y)

Finally, we will show that D is bounded to complete the proof.

To begin, let HK be a RKHS with kernel K and ρ be a distribution

supported on a compact manifold M⊂ X. Consider the L2
ρ inner product

〈f, g〉ρ =

∫
X
f(x)g(x) dρ(x)

and let IK denote the corresponding integral operator

(IKf)(x) = 〈f, kx〉 =

∫
f(y)K(x, y) dρ(y)
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As noted in 3.2.2, IK is a compact self-adjoint operator. Denote its

eigenfunctions and eigenvalues by e1, e2, . . . and λ1, λ2, . . . , respectively.

The following properties of IK will prove helpful shortly.

Lemma 5.2.1. The functions
√
λiei form an orthonormal basis for HK .

Corollary 3. Any g ∈ HK may be written as g =
∑∞

i=1 biei.

Lemma 5.2.2. A function f =
∑∞

i=1 aiei lies in the image of IK if and

only if
∞∑
i=1

b2i <∞ (5.8)

where bi = ai/λi.

Proofs of both lemmas are included in Appendix A.1.6.

Next, consider the closure of the span of the kernels of points x ∈M,

denoted S:

S = span{kx : x ∈M}

Note that S with the induced inner product from HK is a Hilbert space.

Let HKM and SM denote restrictions to M of HK and S, each of which

can be seen as Hilbert spaces (with the induced kernel K).

We need two properties of S and SM.

Lemma 5.2.3. HKM = SM

Lemma 5.2.4. The complement of S is S⊥ = {f ∈ H : f(M) = 0}.

Proofs are included in Appendix A.1.7.

We now return to our learning problem

arg min
f∈HK

Lsup(y, f(x)) + γK ‖f‖2K + γI

∫
M
‖∇f(x)‖ dρX(x) (5.9)

We proceed in three steps: (1) we show a solution f exists, (2) we show

f ∈ S, and (3) we show that f has the desired form.

For ease of notation, let H denote the loss we aim to minimize in 5.9.

H(f) = Lsup(y, f(x)) + γK ‖f‖2K + γI ‖f‖2I

where we write ‖f‖2I in place of
∫
M ‖∇f(x)‖ dρX(x).
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Lemma 5.2.5. A minimizer f∗ of Equation 5.9 exists.

Proof. Consider a ball Br ⊂ Hk of radius r: Br = {f ∈ S : ‖f‖K ≤ r}.
Since this ball is compact in L∞, there must exist a minimizer f∗r ∈ Br of

Equation 5.9 in this ball.

The zero function gives us a lower bound on H(f∗r ):

H(f∗r ) ≤ H(0) =
1

NL

NL∑
i=1

Lsup(xi, yi, 0)

If the zero function is a solution, we are done. Otherwise, we obtain a

bound on the ‖·‖K term:

‖f‖2K ≤
1

γK

(
(Lsup(y, f(x)) + γI ‖f‖2I

)
) <

1

NLγK

NL∑
i=1

Lsup(xi, yi, 0)

If we keep increasing the radius r of our ball, H(f) must be lower bounded

(because the right hand side is fixed). Specifically, the minimizer cannot be

found outside the ball of radius r =
√

1
NLγK

∑NL
i=1 Lsup(xi, yi, 0).

Therefore there exists a solution f∗.

Also, if V is convex then the full objective is convex and the solution is

unique.

Lemma 5.2.6. If the intrinsic norm ‖·‖I satisfies the following

smoothness condition:

f |M = g|M =⇒ ‖f‖I = ‖g‖I ∀f, g ∈ HK (5.10)

Then the solution f∗ of Equation 5.9 lies in S.

Proof. Let f ∈ HK . Decompose f into the orthogonal projections

f = fS + fS⊥ . By Lemma 5.2.4, fS⊥ = 0 on M. Then (f − fS) = 0 on M,

so for the intrinsic norm:

‖f‖2I = ‖fS‖2I
For the extrinsic norm, we have

‖f‖2K = ‖fS‖2K + ‖fS⊥‖
2
K
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which implies

‖f‖2K ≥ ‖fS‖
2
K

This shows that f∗ ∈ S, because if f∗ had any component orthogonal to S,

this component would contribute strictly positively to the expression in

Equation 5.9.

From now on, we will assume that ‖·‖I satisfies the smoothness

condition (5.10).

We have finally built up to the main result.

Theorem 5.2.3. The minimizer f∗ of

H(f) =
1

NL

NL∑
j=1

Lsup(yj , f(xj)) + γK ‖f‖2K + γI ‖f‖2I (5.11)

takes the form:

f∗(x) =

NL∑
i=1

aiK(xi, x) +

∫
M
a(y)K(x, y) dρX(y) (5.12)

Proof. By Lemma 5.2.5, a minimizer f∗(x) exists. By Lemma 5.2.6,

f∗(x) ∈ S, the closure of kernel functions centered at points in M. By

Lemma 5.2.1, we can write f∗ =
∑∞

i=1 aiei, where {ei} are the basis formed

by the eigenvectors of the integral operator IK , which we defined above as

IK(f) =
∑
M f(y)K(x, y) dρX(y).

We will show that f∗ decomposes into two terms, the first of which is a

finite sum of kernel functions at the data points xi, and the second of

which is lies in the image of IK and so may be written as∑
M a(y)K(x, y) dρX(y) for some function a.

To begin, we plug f∗ =
∑∞

i=1 aiei into H:

H(f∗) =
1

NL

NL∑
j=1

Lsup

(
(yj ,

∞∑
i=1

aiei(xj)

)
)+γK

∥∥∥∥∥f
∞∑
i=1

aiei

∥∥∥∥∥
2

K

+γI

∥∥∥∥∥f
∞∑
i=1

aiei

∥∥∥∥∥
2

I

We differentiate with respect to ak and set the result to 0:

0 =
∂H(f∗)

∂ak
=

1

NL

NL∑
j=1

ek(xj)∂(2)Lsup(yj , f
∗(xj)) + 2γK

ak
λk

+ γI〈(D +D∗)f, ek〉
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where D is a differential operator, D∗ is its adjoint, and ∂(2) is the partial

with respect to the second input of Lsup. Note the two terms above

corresponding to the norms hold because

∂H(f∗)

∂ak

∥∥∥∥∥f
∞∑
i=1

aiei

∥∥∥∥∥
2

K

=
∂H(f∗)

∂ak

∞∑
i=1

a2
i

λi
= 2

ak
λk

and

∂H(f∗)

∂ak

∥∥∥∥∥f
∞∑
i=1

aiei

∥∥∥∥∥
2

K

= 〈Df, ek〉+ 〈f,Dek〉 = 〈(D +D∗)f, ek〉

Solving the equation above for ak yields

ak = − λk
2γK

γI 1

NL

NL∑
j=1

ek(xj)∂(2)Lsup(yj , f
∗(xj)) + 〈(D +D∗)f, ek〉


We can plug this expression back into f∗ =

∑∞
i=1 aiei to give

f∗(x) = − 1

2γKNL

NL∑
j=1

∞∑
k=1

λkek(xj)ek(x)∂(2)Lsup(yj , f
∗(xj))−

λk
2γK

∞∑
k=1

λk〈(D +D∗)f, ek〉ek

Using the fact that K(x, y) =
∑∞

i=1 λiei(x)ei(y), we have:

f∗(x) = − 1

2γKNL

NL∑
j=1

K(x, xj)∂(2)Lsup(yj , f
∗(xj))︸ ︷︷ ︸

sum of kernels at data xj

− λk
2γK

∞∑
k=1

λk〈(D +D∗)f, ek〉ek︸ ︷︷ ︸
this is in the image of IK

The first term above takes our desired form. By Lemma 5.2.2, the second

term above is in the image of IK if and only if:

∞∑
k=1

(λk〈(D +D∗)f, ek〉)2

λ2
k

=
∞∑
k=1

〈(D +D∗)f, ek〉2

is bounded. Lemma 5.2.7 below shows that D is bounded, implying that

D +D∗ is bounded and so the expression above is bounded. Given this

result, the second term above is in the image of IK , and so takes the form∫
M g(y)K(x, y) dρX(y).
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Therefore

f∗(x) =

NL∑
i=1

aiK(xi, x) +

∫
M
a(y)K(x, y) dρX(y)

for some real numbers ai and some function a.

To complete the proof, all that remains is to show that D is bounded.

To do so, we have to be a bit more specific about the geometry of our

manifold. Let M be a boundaryless manifold with measure ρ, D ∈ C∞ a

differential operator, and K(x, y) a kernel with at least 2k derivatives.

Lemma 5.2.7. D : S → L2
ρ is a bounded operator.

Proof. We show D is bounded on HK . Note that the integral operator IK
defined above is compact (and so bounded). As a result, IKD is bounded,

and (by taking the adjoint and composing with D∗) we have that

DIKD
∗ : L2

ρ → L2
ρ is bounded.

Consider the square root I
1/2
K of IK . As seen by the eigenvalues of I

1/2
K

or the relation I
1/2
K ◦ I1/2

K = IK , this operator is positive and adjoint. As

seen above, I
1/2
K : HK → L2

ρ is an isometry, so any g ∈ HK may be written

as I
1/2
K f for some f ∈ L2

ρ. Then ‖f‖L2
ρ

= ‖g‖K . We now have

‖Dg‖L2
ρ

=
∥∥∥DI1/2

K f
∥∥∥
L2
ρ

≤
∥∥∥DI1/2

K f
∥∥∥
L2
ρ

‖f‖L2
ρ

=
∥∥∥DI1/2

K f
∥∥∥
L2
ρ

‖g‖K (5.13)

Finally, we bound DI
1/2
K . Let ε > 0 be arbitrary. There exists f ∈ L2

ρ such

that ‖f‖L2
ρ

and∥∥∥DI1/2
K

∥∥∥2

L2
ρ

=
∥∥∥I1/2
K D∗

∥∥∥2

L2
ρ

≤ 〈I1/2
K D∗f, I

1/2
K D∗f〉L2

ρ
= 〈DIKD∗, f〉L2

ρ
≤ ‖DIKD∗‖ ‖f‖2

Now ‖f‖2 ≤ (1 + ε)2 and ‖DIKD∗‖ is bounded, so
∥∥∥DI1/2

K

∥∥∥2

L2
ρ

is bounded.

Returning to Equation 5.13, we see:

‖Dg‖L2
ρ
≤
∥∥∥DI1/2

K f
∥∥∥
L2
ρ

‖g‖K ≤ C · ‖g‖K

for some constant C. Therefore D is a bounded operator S → L2
ρ.
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With this result, our proof of Theorem 5.2.2 is complete.

Fortunately, the proof of the discrete manifold regularization theorem is

significantly simpler. It parallels the orthogonality argument from the

original representer theorem.

Theorem 5.2.4 (Theorem 5.2.2). The minimizer f∗ of

H(f) =
1

NL

NL∑
j=1

Lsup(yj , f(xj)) + γK ‖f‖2K +
γI

(NL +NU )2
fTLf (5.14)

takes the form:

f∗(x) =

NL+NU∑
i=1

aiK(xi, x) (5.15)

Proof. Suppose f is a minimizer of Equation 5.14. Let S be the subspace

spanned by the kernel functions Kxi on the data {xi}NL+NU
i=1 , in other

words the functions that may be written in the form
∑NL+NU

i=1 aiK(xi, x)

for some coefficients ai.

Write f = fS + fS⊥ , where fS and fS⊥ are orthogonal projections onto S

and S⊥. Our goal is to show that fS⊥ = 0, as then f takes the form

f(x) = fS(x) =
∑NL+NU

i=1 aiK(xi, x).

By the reproducing property, we see that the value of f on a data point

xi does not depend on fS⊥ :

f(xi) = 〈f,Kxi〉 = 〈fS ,Kxi〉+ 〈fS⊥ ,Kxi〉 = 〈fS ,Kxi〉

Examining Equation 5.15, the first and third components of H(f) only

depend on f evaluated at the data points. Therefore H(f) and H(fS)

differ only on the second component:

H(f)−H(fS) = ‖f‖2K − ‖fS‖
2
K = ‖fS⊥‖

2
K

If f is a minimizer of H, this difference cannot be positive, so:

‖fS⊥‖
2
K ≤ 0 =⇒ ‖fS⊥‖

2
K = 0 =⇒ fS⊥ = 0

Therefore f = fS ∈ S and f takes the form

f(x) =

NL+NU∑
i=1

aiK(xi, x)
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Whereas the manifold-based representer theorem is exclusively of

theoretical interest, this graph-based version enables us to compute

solutions to manifold regularized learning problems. We give two examples

of such algorithms below.

5.3 Algorithms

In general, to solve a manifold regularized learning problem, we solve for a

function in the form given by the representer theorem

f(x) =

NL+NU∑
i=1

aiK(xi, x)

by optimizing the parameters ai, usually using gradient-based optimization

methods.

Laplacian Regularized Least Squares (Lap-RLS) Lap-RLS

corresponds to a least squares loss function on the supervised data,

Lsup(f(x), y) = (f(x)− y)2. Our objective is then

f∗ = arg min
f∈H

1

NL

NL∑
j=1

(f(xi)− yi)2 + γK ‖f‖2K +
γI

(NL +NU )2
fTLf

By the representer theorem, our minimizer takes the form

f∗ =
∑NL+NU

i=1 aiK(xi, x). At this point, we would usually use gradient

descent on the ai, but in this case we are able to give a closed form.

To simplify notation, define:

• a = (a1, . . . , aNL+NU ) ∈ R(NL+NU ) to be the vector of coefficients ai

• K = (K(xi, xj))
NL+NU
i,j=1 ∈ R(NL+NU )×(NL+NU ) to be the kernel matrix

(or Gram matrix) on the labeled and unlabeled data

• Y = (y1, . . . , yNL , 0, . . . , 0) ∈ RNL+NU to be the label vector on the

labeled data and 0 on the unlabeled data

• J = diag(1, . . . , 1, 0, . . . , 0) ∈ R(NL+NU )×(NL+NU ) to be the matrix

with 1s on the diagonal entries corresponding to the labeled data and
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0 elsewhere.

Plugging in f∗ =
∑NL+NU

i=1 aiK(xi, x), our objective is:

a∗ = arg min
a∈RNL+NU

1

NL
(Y − JKa)T (Y − JKa) + γKaTKa +

γI
(u+ l)2

fTLf

Taking a derivative and solving for a∗ gives:

a∗ =
(
JK + γKI + γI

(NL+NU )2
LK

)−1
Y

This is the same as the well-known solution w∗ = (K + γKI)−1 Y of the

standard RLS problem, with an added term corresponding to the intrinsic

norm.

Laplacian Support Vector Machines (Lap-SVM) Lap-SVM

corresponds to a hinge loss on the supervised data,

Lsup(f(x), y) = max(0, 1− yf(x)) = (1− yf(x))+ where y ∈ {−1, 1}. Our

objective is then

f∗ = arg min
f∈H

1

NL

NL∑
j=1

max(0, 1− yif(xi)) + γK ‖f‖2K +
γI

(NL +NU )2
fTLf

Again by the representer theorem, f∗ =
∑NL+NU

i=1 aiK(xi, x) and we are

looking for:

a∗ = arg min
a∈RNL+NU

(
1

NL

NL∑
j=1

max
(

0, 1− yi
(∑NL+NU

i=1 aiK(xi, x)
))

+ γKaTKa +
γI

(NL +NU )2
aTKLKa

)

A Note on Complexity The primary difficulty with using Lap-RLS,

Lap-SVM and similar algorithms in practice is the computational

complexity of working with the kernel matrix K, a dense

(NL +NU )× (NL +NU ) matrix. In Lap-RLS, for example, the matrix

inversion takes O((NL +NU )3) time, which is infeasible for datasets

containing millions of unlabeled examples.

Developing sparse and computationally tractable approximations for the
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types of objective functions seen above is an active area of research. In

fact, it is most active in the Gaussian processes research community, which

faces the same challenge of inverting large kernel matrices in Gaussian

process regression.

An Note on the Hessian Thus far, almost all our work has been based

on the Laplacian operator. A somewhat less popular but still notable

theory has arisen in parallel that substitutes the Hessian for the Laplacian.

Changing from a Laplacian-regularized loss function to a

Hessian-regularized is as simple as changing the quadratic form fTLf to

fTHf .

Theoretically, whereas the Laplacian corresponds to the Dirichlet

Energy, the Hessian corresponds to the Eells Energy:

EEells(f) =

∫
M
‖∇a∇bf‖2T ∗xM⊗T ∗xM dV (x)

Manipulating this expression into normal coordinates yields the Frobenius

norm of the Hessian of f :

R(f) =
N∑
i=1

m∑
r,s=1

(
∂2f

∂xr∂xs
(xi)

)2

However, the second-order nature of the Hessian is a double-edged sword.

While it gives the operator the desirable properties mentioned above, it

makes the Hessian difficult to compute. To get around this, [56] introduce

a sparse matrix approximation B by fitting a quadratic function to the

data points. This approximation yields an objective function almost

identical to that of Laplacian-based manifold regularization:

L(f, x, y) = Lsup(y, f(x)) + γK ‖f‖2K + γIf
TBf

where B is analogous to F in Equation 5.11.

5.3.1 Data Graphs

Thus far, we have glossed over the first step of manifold learning

algorithms: constructing a graph from the data. Here, we briefly give a

summary of different types of data graphs. In all cases, the data graph

G = (V,E) is undirected and its vertices V correspond to the observed
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Type Sparse Connected Construction Time

k-Nearest Neighbors 3 3 Varies

ε-Neighbors 3 7 Varies

Gaussian 7 3 O(n2)

b-Matching 3 3 O(dn3)

Table 5.3.1: A comparison of different graph construction methods. Note that
the running time for k-nearest neighbors and ε-neighbors methods depends on the
neighbor-finding algorithm chosen. Usually, a fast, approximate algorithm is chosen
rather than an exact algorithm. It is also possible to improve the speed of b-matching
graph construction with loopy belief propagation.

data {xi}Ni=1.

Common data graphs include:

• k-Nearest-Neighbors Graph: An edge is created between each data

point x and the k other points closest to x (nearest neighbors)

according to some distance function d. This graph is sparse and

connected.

• ε-Neighbors Graph: An edge is created between all pairs (x, x′) of

data points with distance less than ε according to a distance function

d. Each edge has weight 1. This graph is sparse, but it may be

disconnected.

• Gaussian-Weighted Graph: A fully-connected weighted graph is

constructed using Gaussian edge weights: wij = e−
(xi−xj)

2

σ2 for some

σ2 > 0. This graph turns out to have attractive theoretical

properties, but unlike the other graphs here it is dense, so it is

computationally difficult to work with.

• b-Matching Graph: A graph is obtained by solving a maximum

weight matching problem: minw
∑

wijd(xi,xj)
subject to the

constraints that wi,j is binary, symmetric, and b-regular (i.e. every

node has exactly b edges). The solution is sparse, connected, and

b-regular by construction. It has been found to perform well on small

to medium-sized datasets, but solving the matching problem can take

O(dn3) time.
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Recent research on graph construction includes methods based on

random walks [77], adaptive coding [102], signal representation [31], and

ensembles of different types of graphs [4].

5.4 Convergence of the Graph Laplacian

In the exposition above, we left one final piece of the manifold learning

approach without theoretical justification: our approximation of the data

manifold Laplacian with the analagous data graph Laplacian. Given the

deep connection between manifold and graph Laplacians seen in Chapter 4,

this approximation should hopefully feel natural.

A significant amount of work has gone into proving variants of this

convergent result under different sets of assumptions about the distribution

of data on the manifold and different constructions of the data graph.

The key result in this area, from [10], shows that for data that is

uniformly distributed on a compact manifold, the Laplacian matrix L of a

graph with exponentially-weighted edges converges pointwise to the

Laplacian ∆M of the manifold, as the number of data points goes to

infinity.

Since this result was published, numerous follow-up works have relaxed

the assumptions required for convergence to hold.

[44] extends the results to the setting of random neighborhood graphs,

including the classical random walk graph. [93] relaxes constraints on the

smoothness of the kernel function and extends the analysis to include

additional types of graphs, including kNN-graphs. [12] argues that

singularities and boundaries are an important aspect of realistic data

manifolds, and investigates the behavior of the Laplacian near these points.

[95] proposes a variational approach to investigate the spectral (as

opposed to pointwise) convergence of the graph Laplacian, in the case that

the data is sampled from an open, bounded, connected set. [101] extends

these results to the case of (non-open) manifolds embedded in a

high-dimensional ambient space. [101] finds that when the data is sampled

without noise, the convergence rate depends on only the intrinsic

dimension of the manifold, whereas when it is sampled with noise, the

convergence rate also depends on the dimension of the ambient space. Very

recently, [96] gave error estimates for the spectral convergence rate of the

Laplacian of a wide range of graphs.
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We now state the key result from [10] and give an outline of the proof.

We encourage the interested reader to read the paper for the full details.

Let M be a compact k-dimensional manifold embedded in RN . Let

S = {xi}ni=1 for xi sampled i.i.d. from the uniform distribution on M (that

is, the distribution ρ(x) = 1/vol(M) for x ∈M). For notation’s sake, let n

denote the number of data points (n here corresponds to NL +NU above).

Theorem 5.4.1 (Convergence of the Graph Laplacian). Fix a function

f ∈ C∞(M), a point z ∈M, and a constant a > 0. Set tn = n1/(k+2+a).

Then

lim
n→∞

1

tn(4πtn)
k
2

Ltnn f(z) =
1

vol(M)
∆Mf(z)

where the limit holds in probability.

Proof Outline:

The proof has three steps. The first two steps show that Lt converges to

∆M as t→ 0 using the heat operator. The final step shows that 1
nLtn

converges to Lt as n→∞ using Hoeffding’s inequality.

The key idea of the proof is that if one constructs a weighted graph from

the data points {xi}ni=1 with Gaussian edge weights, one can associate its

(discrete) Laplacian with the (continuous) heat kernel on M.

Formally, let G = (V,E) be a fully-connected weighted graph on |V | = n

vertices, with each vertex corresponding to a data point xi ∈ S. Assign to

each edge (i, j) ∈ G the weight

wij = e
‖xi−xj‖2

4t

where t > 0. Note that G varies with the number of nodes n and the

parameter t.

Consider the Laplacian matrix of G, which we write as Ltn:

Ltnf(xi) = f(xi)
n∑
j=1

wij −
n∑
j=1

f(xj)wij

= f(xi)

n∑
j=1

e
‖xi−xj‖2

4t −
n∑
j=1

f(xj)e
‖xi−xj‖2

4t

We may extend Ltn to a linear operator on functions defined on the
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ambient space of points x ∈ RN :

Ltnf(x) = f(x)
n∑
j=1

e−
‖x−xj‖2

4t −
n∑
j=1

f(xj)e
−‖x−xj‖

2

4t

The continuous analogue of this operator, which we denote Lt, generalizes

the expression from a discrete set of points xj to a measure ρ:

Ltf(x) = f(x)

∫
M
e−
‖x−y‖2

4t dρ(y)−
∫
M
f(y)e−

‖x−y‖2
4t dρ(y)

=

∫
M

(f(x)− f(y))e−
‖x−y‖2

4t dρ(y)

The first two steps of the proof show that as t→ 0, after appropriate

scaling, Lt converges to ∆M:

Lemma 5.4.1. Fix z ∈M. Then:

lim
t→0

1

t(4πt)k/2
Ltf(z) =

1

vol(M)
∆Mf(z)

In the first step, we restrict our attention to an open ball B around

z ∈M and perform an exponential change of coordinates. This coordinate

transformation reduces our computations to computations in Rk.

In the second step, we show that our (transformed) integral involving Lt

converges to the Laplacian in RN . The high-level idea is that since the

manifold is locally Euclidean, we can restrict our attention to a local space

and then prove our result using properties of Gaussians integrals in RN .

The third and final step is a straightforward application of Hoeffding’s

Inequality to obtain the convergence of Ltn.

For the full details, we direct the reader to [10], which we remark is very

well-written.

5.5 Active Areas of Research

Manifold-regularized learning—both in the theoretical and empirical

domains—continues to be a vibrant area of research in machine learning

community.

In the theoretical domain, discussed in the last section, progress

continues to be made on generalizing convergence results for the graph
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Laplacian.

In the empirical domain, manifold regularization is being applied to

improve the performance of learning systems on a range of tasks, such as

point set registration [66] and zero-shot learning [70]. Another line of

research is trying to address the primary drawback of manifold-regularized

learning methods relative to other popular machine learning approaches,

its relatively high computational cost (due to the need to compute

f(x)TLf(x) during optimization). This research tries to scale manifold

regularization to modern big regimes, where it is not uncommon to deal

with millions of data points. [61] models the data distribution with a

neural network and uses it to obtain a Monte-Carlo approximation to the

Laplacian term, enabling them to scale to large datasets. Toward the same

goal, [62] develops an approach based on Nystrom subsampling and

preconditioned conjugate gradient descent.

5.6 Conclusion

The field of manifold learning lies at the intersection of many branches of

mathematics. This thesis has sought to elucidate the connections between

these branches, with a particular emphasis on the remarkable interplay

between graphs and manifolds.

These connections remain a central topic of study both within and

beyond machine learning. Within machine learning, their theoretical and

algorithmic implications drive the development of new proofs and

algorithms. Beyond machine learning, they provide insight into physics,

chemistry, and a host of other domains.

Finally, the mathematics is beautiful in and of itself. The author hopes

that this thesis managed to convey, if nothing else, some small fraction of

that beauty to the reader.
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A
Appendix

A.1 Supplementary Proofs

A.1.1 Appendix: Eigenvalue Bounds (Manifolds)

Theorem A.1.1 (Faber-Krahn Inequality). Let Ω ⊂ Rn be a bounded

domain with smooth boundary. Let B ⊂ Rn be the ball with the same

volume as Ω. Denote by λ2(Ω) the first nonzero eigenvalue of the Laplacian

of Ω under Dirichlet boundary conditions (∂Ω = 0). Then

λ2(Ω) ≥ λ2(B)

with equality if and only if Ω = B.

The following proof is due to [59].

Proof of Faber-Krahn. Denote by f the eigenfunction corresponding to

λ2(Ω). We will construct a radial function g on the ball B that resembles

f . Define g : B → R+ to be the radial function such that

vol(f ≥ t) = vol(g ≥ t)

That is,

g(x) = sup
{
t ≥ 0 : vol(f ≥ t) ≥ vol(B‖x‖)

}
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We have constructed g in this manner so that integrating over t gives:∫
Ω
f2 dV =

∫ ∞
0

vol(f2 ≥ t) dV =

∫ ∞
0

vol(g2 ≥ t) dV =

∫
B
g2 dV

Using the Rayleigh quotient characterization of the eigenvalue λ2, we have

λ2(Ω) =

∫
Ω |∇f |

2∫
Ω f

2
and λ2(B) =

∫
B |∇g|

2∫
B g

2

We have shown that the denominators are equal, so it remains to be shown

that
∫

Ω |∇f |
2 ≥

∫
Ω |∇g|

2.

Consider the area of a level set {g = t}. Since g is radial, it is constant

on its own level sets:

Area{g = t} =

∫
{g=t}

dS =

√∫
{g=t}

|∇g| dS
∫
{g=t}

1

|∇g|
dS

For f , by Cauchy-Schwartz:

Area{f = t} =

∫
{f=t}

dS ≤
√∫

{f=t}
|∇f | dS

∫
{f=t}

1

|∇f |
dS

The key step of the proof is to use the isoperimetric inequality, which states

that the ball is the surface with maximal ratio of volume to surface area.√∫
{f=t}

|∇f | dS
∫
{f=t}

1

|∇f |
dS ≥ Area{f = t} ≥ Area{g = t}

=

√∫
{g=t}

|∇g| dS
∫
{g=t}

1

|∇g|
dS (A.1)

Next, the co-area formula states

vol(Ω′) =

∫
Ω′
dV =

∫ ∞
−∞

1

|∇f |
Area(f−1(t))dt

which applied to f on Ω and g on B gives:∫
{f=t}

1

|∇f |
dS = − d

dt
vol(f ≥ t) = − d

dt
vol(g ≥ t) =

∫
{g=t}

1

|∇g|
dS (A.2)

where the middle equality holds because vol(f ≥ t) = vol(g ≥ t).
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From Equations A.1 and A.2, we see∫
{f=t}

|∇f | dS ≥
∫
{g=t}

|∇g| dS

and so∫
Ω
|∇f |2 =

∫ ∞
0

(∫
{f=t}

|∇f | dS

)
dt ≥

∫ ∞
0

(∫
{g=t}

|∇g| dS

)
dt =

∫
Ω
|∇g|2

This result completes the proof.

A.1.2 Appendix: Eigenvalue Bounds (Graphs)

The following theorem was proven by Miroslav Fiedler in 1973 [34] and is

the origin of the term “Fielder value”.

Theorem A.1.2 (Fielder).

λ2 ≤
n

n− 1
min
v∈V

dv and λn ≥
n

n− 1
max
v∈V

dv (A.3)

Proof. Define the matrix M by

M = L− λ2(I − J/n)

Note that M1 = 0 for the constant vector 1 because (I − J/n)1 = 0.

Any vector y may be decomposed into its orthogonal components

y = c11 + c2x, where x is a unit-length vector orthogonal to 1. Then we

have

yTMy = c2
2x
TMx = c2

2(xTLx− λ2)

Since λ2 = minx⊥1,‖x‖2=1 x
TLx, the quantity above is always positive, so

that M is positive semidefinite.

Let Mii denote the i-th diagonal element of M . Note that Mii ≥ 0 (as it

equals eTi Mei). We then have

min
i
Mii = min

i
Lii − λ2(1− 1/n) ≥ 0

and rearranging gives A.3.

A bound on λn was proven by Anderson and Morley in 1985 [3].
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Theorem A.1.3 (Anderson and Morley).

λn ≤ max
(i,j)∈E

(di + dj)

This bound was strengthened by Merris [71], who also provided a simple

proof based on Gershgorin’s circle theorem.

Theorem A.1.4 (Merris). Let m(i) be the average of the degrees of

vertices adjacent to vertex i. That is, m(i) = 1
|N(i)|

∑
j∈N(i) dj where N(i)

denotes the neighbors of i. Then

λn ≤ max
i∈V

(di +m(i)) (A.4)

Lemma A.1.1 (Gershgorin’s circle theorem). Let M be an n× n matrix

with entries mij. Let ri =
∑

j 6=i |mij | be the sum of the non-diagonal

elements of the i-th row of M . Let Di = D(mii, ri) ⊂ C be the closed disk

in the complex plane with radius ri and center mii. Then every eigenvalue

of M is contained in some Di.

Proof of Lemma. Let λ be an eigenvalue of M with corresponding

eigenvector v. Without loss of generality, let the component vi of v with

largest magnitude be 1. We have

(Mv)i = (λv)i = λ

and

(Mv)i =
∑
j

mijvj =
∑
j 6=i

mijvj +mii

so then

|lam−mii| =

∣∣∣∣∣∣
∑
j 6=i

mijvj

∣∣∣∣∣∣ ≤
∑
j 6=i
|mij ||vj | ≤

∑
j 6=i
|mij | = ri

showing that λ ∈ Di.

Proof of Merris’ Bound. Consider L = D−1LD, where D is the diagonal
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matrix of degrees of vertices.

Lij =


di i = j

−dj/di (i, j) ∈ E
0 otherwise

Applying Gershgorin’s circle theorem gives that every eigenvalue λ of L is

bounded by

max
i
Lii + ri = max

i
Lii +

∑
j∈N(i)

| − dj/di| = max
i

(di +
1

N(i)

∑
j∈N(i)

dj) = max
i

(di +m(i))

Since L is similar to D−1LD, they share the same eigenvalues, and A.4

holds.

A simple bound relates λ2 on a graph to λ2 on a subset of the vertices.

Theorem A.1.5. For a subset S ⊂ V of the vertices of G, let G \ S denote

the graph with all vertices in S and edges connecting to S removed. Then

λ2(G) ≤ λ2(G \ S) + |S|

Proof. Let v be an eigenvector of the Laplacian of G \ S corresponding to

the eigenvalue λ2(G \ S). Consider v as a vector on all of G by adding 0s in

the entries corresponding to 0. By the Rayleigh characterization of λ2,

λ2 ≤
∑

(i,j)∈E(G)

(vi − vj)2

Each of these edges has 0, 1, or 2 vertices in S, so

λ2 ≤
∑

(i,j)∈E(G\S)

(vi − vj)2 +
∑
i∈S

∑
j∈N(i)

v2
j + 0 ≤ λ2(G \ S) + |S|

A.1.3 Appendix: Cauchy’s Interlacing Theorem

Cauchy’s Interlacing Theorem is a satisfying result relating the eigenvalues

of a matrix to those of a principal submatrix of dimension (n− 1) (i.e. a

submatrix obtained by deleting the same row and column). As one might

intuitively expect, these set of eigenvalues cannot differ greatly.
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We prove two versions of this result, the second of which is sometimes

called Weyl’s Theorem or Weyl’s Perturbation Inequality.

Theorem A.1.6 (Cauchy’s Interlacing Theorem). Let A be a self-adjoint

n× n matrix. Let B be a principal submatrix of A of dimension n− 1.

Denote the eigenvalues of A and B by α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn,

respectively. Then

α1 ≤ β1 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn ≤ αn

Proof. Without loss of generality, let the first row and column of A be

deleted. By the Courant-Fischer Theorem applied to A,

αk+1 = max
S⊂R,dim(S)=n−k

min
x∈S,x6=0

xTAx

xTx

and by the Courant-Fischer Theorem applied to B,

βk = max
S⊂Rn−1,dim(S)=n−k−1

min
x∈S,x6=0

xTBx

xTx
= max

S⊂Rn−1,dim(S)=n−k−1
min

x∈S,x6=0

(0 x)TA(0 x)

xTx

where (0 x) is the n-dimensional vector with 0 in its first component and

the entries of x in its (n− 1) other components. Comparing these

expressions, we see αk+1 ≥ βk because the expression for βk is the same as

that for αk, but taken over a smaller space. The other direction (αk ≤ βk)
is obtained by the same method applied to αk and βk.

Corollary 4. Let B be a principal submatrix of A of dimension r. Then

αi ≤ βi ≤ αi+n−r

Proof. Apply Cauchy’s Interlacing Theorem r times.

An application of these ideas is that removing an edge from a graph

decreases its eigenvalues. The proof here, due to [38], is the simplest proof

of which I am aware. It uses heavy machinery from complex analysis, so

Theorem A.1.7 (Edges Increase Eigenvalues). Let G be a non-complete

graph and (i, j) an edge not in E. Denote by G′ the graph G with edge

(i, j) added. Then the eigenvalues of G′ interlace those of G:

0 = λ1(G) = λ1(G′) ≤ λ2(G) ≤ λ2(G′) ≤ λ3(G) ≤ · · · ≤ λn(G) ≤ λn(G′)
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Proof. Let L and L′ be the Laplacians of G and G′, respectively. Let z be

the vector that is 1 in the entry corresponding to vertex i, −1 in the entry

corresponding to vertex j, and 0 elsewhere. Then L′ = L− zzT .

For a real number t, consider the quantity tI − L′. We have

tI − L′ = tI − L− zzT = (tI − L)(I − (tI − L)−1zzT )

Taking determinants gives:

det(tI − L′) = det(tI − L) det(I − (tI − L)−1zzT )

The determinant has the property that det(I − CD) = det(I −DC), so

det(I − (tI − L)−1zzT ) = 1− zT (tI − L)−1z

and
det(tI − L′)
det(tI − L)

= 1− zT (tI − L)−1z

Denote this expression as a function of t by ψ(t).

We now prove a lemma about rational functions of this form.

Lemma A.1.2. Let ψ be a rational function of the form

ψ(t) = zT (tI − L)−1z for a real self-adjoint matrix L. Then

1. ψ has simple zeros and poles

2. ψ′ < 0 where it is defined.

3. Consecutive poles of ψ are separated by no more than 1 zero of ψ.

Proof of Lemma. Write

ψ(t) =
∑

λ∈eval(L)

zT vλz

t− λ

where eval(L) denotes the set of eigenvalues of L with corresponding

eigenvectors vλ. Note that the poles of this expression are simple.

Differentiating gives

ψ′(t) = −
∑

λ∈eval(L)

zT vλz

t− λ

2

= −zT (tI − L)−2z
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which is negative as zT (tI − L)−2z =
∥∥(tI − L)−1z

∥∥2
. Then each zero of ψ

is simple.

Now consider consecutive poles a and b of ψ. As they are simple and

ψ′ < 0, ψ is strictly decreasing on [a, b]. Since t is positive near a in this

interval and negative near b in this interval, it follows that ψ has exactly

one zero in [a, b]. This result completes the lemma.

We now complete the main proof. Applying the lemma with ψ(t) defined

as above, we see that ψ has simple zeros and poles, with consecutive poles

separated by a single zero. Its poles are the zeros of det(tI − L) and its

zeros are the zeros of det(tI − L′). In other words, its poles are the

eigenvalues of L and its zeros are the eigenvalues of L′. It follows from the

lemma that the n zeros and poles of ψ interlace.

It remains to be shown that this interlacing begins with an eigenvalues

of L (and not L′), but this is clear because the trace of L′ (the sum of the

eigenvalues) is 2 greater than the trace of L.

A.1.4 Appendix: Cheeger’s Inequality

Cheeger’s Inequality relates the conductance of a graph or manifold to its

second eigenvalue λ2.

Theorem A.1.8 (Cheeger’s Inequality for Graphs). For an unweighted

d-regular graph,

h(G) ≤
√

2dλ2

Theorem A.1.9 (Cheeger’s Inequality for Manifolds). For a closed

manifold M,

h(M) ≤
√

2λ2

The following proofs are due to [94].

Proof (Graphs). The proof is based on the Rayleigh characterization of λ2.

For ease of notation, alongside the Rayleigh quotient R(f), define the L1

Rayleigh quotient R1(f) as

R1(f) =

∑
(i,j)∈E |f(i)− f(j)|∑

(i,j)∈E |f(i)|

As an aside, note that we used the L1 Rayleigh quotient above (without

defining it) to measure the boundary of subsets.
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The proof proceeds in three lemmas. The outline is as follows:

1. First, we show there exists a nonnegative function f̂ supported on at

most half the vertices of G such that R(f̂) ≤ λ2.

2. Second, we consider the elementwise square of f̂ , denoted g. We show

R1(g) ≤
√

2dR(f̂)

3. Third, we show there exists a real t ≥ 0 such that the set

S = {i : g(i) > t} has

hG(S) ≤ R1(g)

Then h(G) ≤ hG(S) ≤ R1(g) ≤
√

2dR(f̂) ≤
√

2dλ2.

Lemma A.1.3 (G1). Let f be a vector orthogonal to the constant vector.

Then there exists a vector f̂ with nonnegative entries such that:

1. |{i : f̂(i) > 0}| ≤ 1
2 |V |

2. R(f̂) ≤ R(f)

Proof. Denote by m the median of the entires of f . Let f = f −m1, where

1 is the constant vector of 1s. We have

〈f,∆f〉〈f −m1,∆(f −m1)〉 = 0 + 〈f,∆f〉

and

〈f, f〉 = 〈f −m1, f −m1〉 = 〈f, f〉+ 〈m1,m1〉 ≥ 〈f, f〉

because f ⊥ 1 and ∆1 = 0. Then

R(f) =
〈f,∆f〉〈
〈f, f〉

≤ 〈f,∆f〉〈
〈f, f〉

= R(f) = λ2

Now split f into two vectors consisting of its positive and negative

components, f = f+ − f−. That is, f+
i = max(0, f i) and

f−i = max(0,−f i).
Let f̂ be the vector in {f+, f−} with smaller Rayleigh quotient.

f̂ =

{
f+ R(f+) < R(f−)

f− otherwise
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Since both f+ and f− have at most |V |/2 nonzero entries, f̂ is supported

on at most half the vertices of G. It remains to bound min(R(f+), R(f−)).

Using the fact that for a1, b1, a2, b2 > 0,

min

(
a1

b1
,
a2

b2

)
≤ a1 + a2

b1 + b2

we obtain

min(R(f+), R(f−)) = min

(
〈f+,∆f+〉
〈f+, f+〉

,
〈f−,∆f−〉
〈f−, f−〉

)
≤ 〈f

+,∆f+〉+ 〈f−,∆f−〉
〈f+, f+〉+ 〈f−, f−〉

Since f+ and f− have disjoint support, 〈f+, f−〉 = 0 and

〈f+, f+〉+ 〈f−, f−〉 = 〈f+ − f−, f+ − f−〉 = 〈f, f〉

Also, by the triangle inequality,

〈f+,∆f+〉+ 〈f−,∆f−〉 ≤ 〈f,∆f〉

As a result,

min(R(f+), R(f−)) ≤ 〈f,∆f〉
〈f+, f+〉+ 〈f−, f−〉

= R(f) ≤ R(f) = λ2

which completes the proof of the lemma.

Lemma A.1.4 (G2). For a vector f , if g is defined by gi = f2
i , then

R1(g) ≤
√

2dR(f).

Proof. This lemma is the Cauchy-Schwartz inequality in disguise. Applying
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Cauchy-Schwartz to the numerator of R1(g) gives∑
(i,j)∈E

|g(i)− g(j)| =
∑

(i,j)∈E

|f2(i)− f2(j)|

=
∑

(i,j)∈E

|f(i)− f(j)|(f(i) + f(j))

≤
√ ∑

(i,j)∈E

(f(i)− f(j))2

√ ∑
(i,j)∈E

(f(i) + f(j))2 (CS)

=

√ ∑
(i,j)∈E

R(f)
∑
i

f(i)2

√ ∑
(i,j)∈E

(f(i) + f(j))2 (def of R(f))

≤
√ ∑

(i,j)∈E

R(f)
∑
i

f(i)2

√ ∑
(i,j)∈E

2f(i)2 + 2f(j)2

=

√
R(f)

∑
i

f(i)2

√
2d
∑
i

f(i)2

=
√

2dR(f)
∑
i

f(i)2 =
√

2dR(f)
∑
i

g(i)

Therefore

R1(g) =

∑
(i,j)∈E |g(i)− g(j)|∑

i g(i)
≤
√

2dR(f)

Lemma A.1.5 (G3). For every nonnegative vector g, there is a real t > 0

such that
|∂{i : g(i) > t}|
|{i : g(i) > t}|

≤ R1(g)

Proof. Let St = {i : g(i) > t}. These St are sometimes called Sweep sets.

For each edge (i, j), let 1tij denote the indicator that (i, j) ∈ St.
First, we relate |∂St| to R1(g). The numerator of R1(g) may be

expressed as ∑
(i,j)∈E

|g(i)− g(j)| =
∑

(i,j)∈E

∫ ∞
0

1tijdt
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The size of the boundary of St is |∂St| =
∑

(i,j)∈E 1tij , so∫ ∞
0
|∂St| =

∑
(i,j)∈E

|g(i)− g(j)|

Also note that ∫ ∞
0
|St| =

∑
i

g(i)

Putting these together, we have

R1(g) =

∑
(i,j)∈E |g(i)− g(j)|∑

i g(i)

≤
∫∞

0 |∂St|∫∞
0 |St|

Letting t∗ be the minimizer of |∂St|/|St|, we have

R1(g) ≤
∫∞

0 |∂St∗ |/|St∗ ||St|∫∞
0 |St|

= |∂St∗ |/|St∗ |

Therefore t∗ satisfies the statement of the lemma.

We may now complete the proof of Cheeger’s Inequality. Let f be the

eigenfunction corresponding to λ2. By Lemma G1, we obtain a

corresponding nonnegative function f̂ , supported on at most half the

vertices of G, such that R(f̂) ≤ R(f) = λ2. By Lemma G2, with g

denoting the elementwise square of f̂ , we obtain

R1(g) ≤
√

2dR(f̂)

Apply Lemma G3 and denote the resulting set by S = {i : g(i) > t}. By the

lemma and the fact that S contains at most half the vertices of G, we have

hG(S) =
|∂S|
|S|
≤ R1(g) ≤

√
2df̂ ≤

√
2dλ2

The proof of the manifold case follows a nearly identical structure.
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Proof (Manifolds). Similarly to the proof above, define the L1 Rayleigh

quotient R1(f) as

R1(f) =

∫
M ‖∇f‖ dV∫
M ‖f‖ dV

The proof proceeds in three lemmas.

1. First, we show there exists a nonnegative function f̂ with supported

on a set of volume at most 1
2vol(M) such that R(f̂) ≤ λ2.

2. Second, we show that

R1(f2) ≤
√

2R(f̂)

3. Third, we show there exists a real t ≥ 0 such that the set

S = {x : f2(x) > t} has

hM(S) ≤ R1(f2)

Then we have

h(M) ≤ hM(S) ≤ R1(f2) ≤
√

2R(f̂) ≤
√

2λ2

Lemma A.1.6 (M1 (Manifolds)). Let f be a function with
∫
M f = 0.

Then there exists a function f̂ ≥ 0 such that:

1. vol({x : f̂(x) > 0}) ≤ 1
2vol(M)

2. R(f̂) ≤ R(f)

Proof. Let m be a median of f , which is to say the smallest m such that

vol({x : f(x) < m}) ≥ 1/2. Let f(x) = f(x)−m. The numerators of R(f)

and R(f) are the same

〈f,∆f〉〈f −m,∆(f −m)〉 = 0 + 〈f,∆f〉

since the Laplacian of a constant is 0. The denominator of R(f) is larger

〈f, f〉 = 〈f −m, f −m〉 = 〈f, f〉+ 〈m,m〉 ≥ 〈f, f〉

because f is orthogonal to a constant (i.e. it integrates to 0). Note that

whereas in the proof above, these inner products referred to matrix

products, here they refer to integration over M.
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We then have

R(f) =
〈f,∆f〉〈
〈f, f〉

≤ 〈f,∆f〉〈
〈f, f〉

= R(f) = λ2

Now let f+
i = max(0, f i) and f−i = max(0,−f i). Define f̂ be the function

in {f+, f−} with smaller Rayleigh quotient. Note that f̂ is supported on a

region with volume at most half of that of M.

The remainder of the proof is exactly the same as the proof for graphs

above.

min(R(f+), R(f−)) = min

(
〈f+,∆f+〉
〈f+, f+〉

,
〈f−,∆f−〉
〈f−, f−〉

)
≤ 〈f

+,∆f+〉+ 〈f−,∆f−〉
〈f+, f+〉+ 〈f−, f−〉

Since f+ and f− have disjoint support, 〈f+, f−〉 = 0 and

〈f+, f+〉+ 〈f−, f−〉 = 〈f+ − f−, f+ − f−〉 = 〈f, f〉

Also, by the triangle inequality,

〈f+,∆f+〉+ 〈f−,∆f−〉 ≤ 〈f,∆f〉

As a result,

min(R(f+), R(f−)) ≤ 〈f,∆f〉
〈f+, f+〉+ 〈f−, f−〉

= R(f) ≤ R(f) = λ2

which completes the proof of the lemma.

Lemma A.1.7 (M2). For nonnegative f ,

R1(f2) ≤
√

2R(f)
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Proof. We apply the chain rule and the Cauchy-Schwartz inequality:∫
M

∥∥∇(f2)
∥∥ dV =

∫
M

2|f | ‖∇f‖ dV (Chain Rule)

≤

√∫
M

4f2 dV

√∫
M
‖∇f‖2 dV (CS)

= 2

∫
M
f2 dV ·

√
R(f)

Therefore

R1(f2) ≤
√

2R(f)

Lemma A.1.8 (M3). For every nonnegative function g, there is a real

t > 0 such that
area(∂{x : g(x) > t})|

vol({x : g(x) > t})
≤ R1(g)

Proof. Let St = {x : g(x) > t}. Consider the numerator and denominator

of R1(g).

For the numerator, the coarea formula (4.10) states∫
M
‖∇g‖ dV =

∫ ∞
0

area(∂St) dt

For the denominator, observe that∫
M
‖g‖ dV =

∫ ∞
0

vol(St) dt

Putting these together, we have

R1(g) =

∫∞
0 area(∂St) dt∫∞

0 vol(St) dt

Letting t∗ be the minimizer of area(∂St)/vol(St), we have

R1(g) ≤
∫∞

0 area(∂St∗)/vol(St∗)vol(St)∫∞
0 vol(St)

= area(∂St∗)/vol(St∗)

Therefore t∗ satisfies the statement of the lemma.
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To complete the proof of Cheeger’s Inequality on manifolds, let f be the

eigenfunction corresponding to λ2. By Lemma M1 (Manifolds), we obtain a

function f̂ supported on a set with volume at most half that of M, such

that R(f̂) ≤ R(f) = λ2. By Lemma M2, we obtain R1(f2) ≤
√

2R(f̂).

Apply Lemma M3 and denote the result by S = {x : g(x) > t}. By the

lemma and the fact that vol(S) ≤ 1
2vol(M),

hG(S) =
|∂S|
|S|
≤ R1(g) ≤

√
2f̂ ≤

√
2λ2

Upon proving Cheeger’s inequality, we have a few remarks. First,

Cheeger’s inequality is tight; the path graph, which we saw above, has

h(G) = 1/d(n− 1)/2e and λ2 ≈
π2

2(n− 1)2

Second, the proof of Cheeger’s inequality for graphs immediately yields an

algorithm for finding a subset of vertices with hG(S) ≤
√

2λ2. Such a set is

called a sparse cut of G.

Algorithm 1: Finding a sparse cut from f2

Input: The 2nd eigenfunction f2

Result: A sparse cut S ⊂ V
f ← D−1/2f2

Sort the vertices so f(v1) ≤ · · · ≤ f(vn)
Initialize i← 0, S ← ∅, S∗ ← {v1}
while i < n do

i = i+ 1
S = S ∪ {vi}
if hG(S) ≤ hG(S∗) then

S∗ ← S
end

end
return S∗
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A.1.5 Appendix: Heat Equation

Theorem A.1.10. Let u(x, t) be a solution to the homogeneous heat

equation. Then φ(t) = ‖u(·, t)‖L2 is a nonincreasing function of t.

Proof.

d

dt
‖u(·, t)‖L2 = 2

∫
M
∂tu(x, t)u(x, t) dµ(x)

= −2

∫
M

∆u(x, t)u(x, t) dµ(x)

= −2 ‖∇u(·, t)‖2

Since the derivative of φ(t) is always negative, it is a nonincreasing

function of t.

Theorem A.1.11. A solution to the homogeneous heat equation is unique.

Proof. Suppose u1 and u2 solve the homogeneous heat equation. Then

u = u1 − u2 solves

Lu(x, t) = 0

u(x, 0) = 0

By the theorem above, the function t 7→
∫
M u(x, t)2 dx is a nonincreasing

function of t. Since u(x, 0) = 0, we must have u(x, t) = 0. Therefore

u1 = u2.

Theorem A.1.12 (Sturm-Liouville decomposition). Denote the

eigenvalues and eigenfunctions of the Laplacian ∆ by λ1 ≤ λ2 ≤ · · · and

φ1, φ2, . . . , respectively. Then

p(x, y, t) =
∞∑
i=0

e−λitφi(x)φi(y)

The following proof is adopted from [19].

Proof. By the spectral theorem, as e−∆ is a compact self-adjoint operator,

it has eigenvalues

β1 ≥ β2 ≥ · · ·

with corresponding eigenfunctions φ1, . . . , φn.
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Let λi = − lnβi. We aim to show these λi are the eigenvalues of ∆. By

the properties of the heat operator,

e−t∆φk =
(
e−∆

)t
φk = βtkφk = e−tλkφk

As e−t∆φk solves the heat equation, we have

0 = L(e−t∆φk) = L(e−tλφk)

= ∆e−tλφk + ∂te
−tλφk

= e−tλ(∆φk − λkφk)

so ∆φk = λkφk, and λk is an eigenvalue of ∆ corresponding to

eigenfunction φk.

Note that by the definition of the heat propagator,

〈p(x, ·, t), φk〉φk(y) =

∫
M
p(x, y, t)φk(y) dµ(y) = e−t∆φk(x) = e−tλkφk(x)

Finally, since the φi form a basis for L2(M), we can write p as

p(x, y, t) =
∞∑
k=0

〈p(x, ·, t), φk〉φk(y) =
∞∑
i=0

e−λitφi(x)φi(y)

A.1.6 Appendix: Integral Operators

Lemma A.1.9. The functions
√
λiei form an orthonormal basis for HK .

Proof. First, we show the collection {
√
λiei} are orthonormal in HK .

Observe that

〈Kx, ei〉ρ =

∫
f(y)K(x, y) dρ(y) = (IKei)(x) = λiei(x)

so Kx = K(x, ·) =
∑∞

i=1 λiei(x)ei. Then by the reproducing property,

ej(x) = 〈Kx, ej〉K =
∞∑
i=1

λiei(x)〈ei, ej〉K
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which implies

〈ei, ej〉K =

{
0 i 6= j

1/λi i = j

Therefore the rescaled vectors {
√
λiei} are orthonormal in HK .

Second, we show that {ei} spans HK . Let f ∈ HK be orthogonal to ei
for all i. Then by the reproducing property:

f(x) = 〈f,Kx〉K =

〈
f,

∞∑
i=1

λiei(x)ei

〉
K

=

〈
f,
∞∑
i=1

λi〈ei,Kx〉Kei

〉
K

=
∞∑
i=1

λiei(x)〈f, ei〉K

= 0

where the last step holds because f is orthogonal to all ei. This result

shows that HK is spanned by {ei}. Therefore
√
λiei is an orthonormal

basis for HK .

Note: Another way of proving this result would be to consider the

square root I
1/2
K of the integral operator. I

1/2
K is an isometry L2

ρ → HK ,

which is to say:

〈f, g〉ρ = 〈L1/2
K f, L

1/2
K g〉K , ∀f, g ∈ HK

And a unit-norm eigenbasis for L
1/2
K is

√
λiei.

Lemma A.1.10. A function f =
∑∞

i=1 aiei lies in the image of IK if and

only if
∞∑
i=1

b2i <∞ (A.5)

where bi = ai/λi.

Proof. Suppose Equation A.5 holds. Let g =
∑∞

i=1 biei ∈ L2
ρ. Applying IK
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yields:

IK(g) = IK(
∞∑
i=1

biei) =
∞∑
i=1

λibiei

=
∞∑
i=1

aiei = f

Then f lies in the span of IK .

For the converse, suppose f = IK(g) for some g ∈ L2
ρ. By the lemma

above, we can write g =
∑∞

i=1 biei ∈ L2
ρ, so we have

∑∞
i=1 bi <∞, which is

Equation A.5.

A.1.7 Appendix: The Closure of span kx

Let S, HKM and SM be defined as in section 5.2 (Lemma 5.2.3).

Lemma A.1.11. HKM = SM

Proof. Let fM be an arbitrary function in M. By the completeness of

HKM , we can write fM = limn→∞ f
(n)
M , where f

(n)
M lies in the span of the

kernel functions: f
(n)
M =

∑
i a

(n)
i KM,x.

Let f (n) be the corresponding sequence in HK : f (n) =
∑

i a
(n)
i Kx.

We see that f (n) is a Cauchy sequence because∥∥f (n) − f (k)
∥∥
K

=
∥∥∥f (n)
M − f (n)

M

∥∥∥
MK

and f
(n)
MK

converges. Then the limit

f = limn→∞ f
(n) exists and f = fM.

Therefore HKM ⊂ SM, and the converse follows with the spaces

swapped.

Lemma A.1.12. The complement of S is S⊥ = {f ∈ H : f(M) = 0}.

Proof. If f ∈ S⊥, then f vanishes on M because f(x) = 〈kx, f〉K = 0 for

x ∈M.

Conversely, if f(M) = 0, then 〈kx, f〉K = f(x) = 0 for every x ∈M so f

is orthogonal to the closure of span{kx : x ∈M}.
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