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Abstract
Service robots are expected to reliably make sense of com-
plex, fast-changing environments. From a cognitive stand-
point, they need the appropriate reasoning capabilities and
background knowledge required to exhibit human-like Visual
Intelligence. In particular, our prior work has shown that the
ability to reason about spatial relations between objects in the
world is a key requirement for the development of Visually
Intelligent Agents. In this paper, we present a framework
for commonsense spatial reasoning which is tailored to real-
world robotic applications. Differently from prior approaches
to qualitative spatial reasoning, the proposed framework is
robust to variations in the robot’s viewpoint and object orien-
tation. The spatial relations in the proposed framework are
also mapped to the types of commonsense predicates used to
describe typical object configurations in English. In addition,
we also show how this formally-defined framework can be
implemented in a concrete spatial database.

1 Introduction
In all cases where it is inconvenient or even dangerous for
us to intervene, there is an incentive to delegate tasks to ser-
vice robots - or robot assistants: e.g., under the extreme
conditions imposed by space explorations (Nilsson et al.
2018), in hazardous manufacturing environments (Liu and
Wang 2020), or whenever social distance needs to be main-
tained (Yang et al. 2020). Before delegating complex tasks
to robots, however, we need to ensure that they can reli-
ably make sense of the stimuli coming from their sensors.
Autonomous sensemaking remains an open challenge, be-
cause it requires not only to reconcile the high-volume and
diverse data collected from real-world settings (Alatise and
Hancke 2020), but also to actually understand these data,
going beyond mere pattern recognition (Lake et al. 2017;
Davis and Marcus 2015).

From a vision perspective, the problem of robot sense-
making becomes one of enhancing the Visual Intelligence of
service robots, i.e., their ability to make sense of the envi-
ronment through their vision system and epistemic compe-
tences (Chiatti, Motta, and Daga 2020). Naturally, several
epistemic competences are required to build Visually Intel-
ligent Agents (VIA). For instance, let us consider the case
of HanS, a Health & Safety robot inspector. HanS is ex-
pected to autonomously detect potentially threatening situa-
tions, such as the fire hazard posed by a sweater left to dry

on top of an electric heater. To assess the risk associated
with this situation, HanS first needs to recognise the sweater
and the heater in question, i.e., it needs to exhibit robust ob-
ject recognition capabilities. It also needs spatial reasoning
capabilities, to infer that the sweater is touching the heater.
Moreover, it also needs to know that sweaters are made of
cloth and that a piece of cloth clogging an electric radiator
can catch fire. The list goes on.

In (Chiatti, Motta, and Daga 2020), we identified a frame-
work of epistemic requirements, i.e., knowledge properties
and reasoning capabilities which are needed to develop Visu-
ally Intelligent Agents (VIA). To form hypotheses on which
epistemic requirements are more likely to significantly en-
hance the Visual Intelligence of a robot, we also mapped
these epistemic ingredients to the types of object classifica-
tion errors emerging from one of HanS’ scouting routines.
This error analysis highlighted that the majority of misclas-
sifications could in principle have been avoided, if the robot
was capable of considering: (i) the canonical size of objects,
e.g., that mugs are generally smaller than bins, as well as
(ii) the typical Qualitative Spatial Relations (QSR) between
objects. For instance, a fire extinguisher may be mistaken
for a bottle due to its shape. However, the proximity of a
fire extinguisher sign is a strong indication that the observed
object is in fact a fire extinguisher. This element of typi-
cality relates to the broader objective of developing AI sys-
tems which can reason about what is plausible (Davis and
Marcus 2015), i.e., which exhibit common sense (Levesque
2017) and Intuitive Physics reasoning abilities (Hayes 1988;
Lake et al. 2017). Our most recent findings (Chiatti et al.
2021) confirmed that combining state-of-the-art Machine
Learning methods with a component able to reason about
object sizes improves the robot’s object recognition perfor-
mance. In this paper, we progress this line of research by
characterising commonsense QSR between objects.

The problem of representing spatial relations has been
actively researched for decades, producing many theoret-
ical frameworks for autonomous spatial reasoning (Cohn
and Renz 2008). In robotics, semantic mapping (Nüchter
and Hertzberg 2008; Kostavelis and Gasteratos 2015) and
object anchoring methods (Coradeschi and Saffiotti 2003)
have enabled linking the robot sensor data and symbolic
knowledge to the geometric maps modelling its environ-
ment. To combine the best of both worlds, a number
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of approaches (Deeken, Wiemann, and Hertzberg 2018;
Kunze et al. 2014; Young et al. 2017) have linked the spa-
tial representations within semantic maps to the higher-level
formal definitions provided by AI theories. In this paper,
we propose a novel spatial reasoning framework which ex-
tends the work in (Deeken, Wiemann, and Hertzberg 2018;
Borrmann and Rank 2010), to account for variations in the
robot’s viewpoint and in the relative orientation of objects.
Moreover, we formally map the Qualitative Spatial Rela-
tions composing this framework to the type of linguistic
predicates used to describe commonsense spatial relations
in English, which are discussed within seminal theories of
spatial cognition (Landau and Jackendoff 1993; Herskovits
1997). Finally, we show how the proposed framework can
be implemented in state-of-the-art Geographic Information
Systems (GIS), to support commonsense spatial reasoning
in real-world robotic scenarios.

2 Related work
Broadly speaking, spatial relations can be represented qual-
itatively - e.g., A contains B - or quantitatively - e.g., the
angle between A and B is θ (Thippur et al. 2015). Follow-
ing (Borrmann and Rank 2010), Qualitative Spatial Rela-
tions (QSR) can be further characterised as (i) metric, i.e.,
based on the metric distance between objects (ii) topologi-
cal, i.e., describing the neighbourhood of objects, and (iii)
directional, i.e., relative to the axis directions in a refer-
ence coordinate system. The interested reader is referred to
(Cohn and Renz 2008) for a foundational review of qual-
itative spatial representations. Compared to quantitative
representations, qualitative representations are more simi-
lar to the types of spatial predicates involved in natural lan-
guage discourse. As a result, qualitative spatial representa-
tions are easier to interpret and aid Human-Robot Interaction
(Sarthou, Alami, and Clodic 2019; Sisbot and Connell 2019;
Thippur, Stork, and Jensfelt 2017). Moreover, they are more
similar to the types of linguistic predicates available within
large-scale, general-purpose Knowledge Bases (KB), such
as those surveyed in (Storks, Gao, and Chai 2019). Cru-
cially, they are also aligned with the spatial predicates pro-
vided with benchmark image collections for visual reason-
ing tasks, such as Visual Genome (Krishna et al. 2017) and
SpatialSense (Yang, Russakovsky, and Deng 2019). Thus,
relying on qualitative representations has the potential to fa-
cilitate the repurposing of these resources in robotic con-
texts, especially given the paucity of comprehensive KBs for
Visually Intelligent Agents (Chiatti, Motta, and Daga 2020).

Extensive efforts have been devoted to mapping the quan-
titative data collected through the robot’s sensors to higher-
level symbols describing a set of known object classes and
their attributes (Nüchter and Hertzberg 2008; Coradeschi
and Saffiotti 2003; Kostavelis and Gasteratos 2015). These
efforts have produced intermediate representational models
also known as semantic maps, i.e., maps that contain, “in
addition to spatial information about the environment, as-
signments of mapped features to entities of known classes”
(Nüchter and Hertzberg 2008). Further approaches have
been proposed, where the content of semantic maps is also
interpreted with respect to formal theories of qualitative

spatial reasoning (Young et al. 2017; Kunze et al. 2014;
Deeken, Wiemann, and Hertzberg 2018). In general, spa-
tial relations are expressed between object pairs, where one
of the two objects is considered as a reference, or landmark:
e.g., bike near house. (Young et al. 2017) have used Ring
Calculus to represent the closeness of objects. (Kunze et
al. 2014) have relied on ternary point calculus (Moratz and
Ragni 2008) to model directional relations with respect to
both the robot’s location and the location of the reference
object. Thus, the 3D regions occupied by objects are re-
duced to point-like objects on the 2D plane. Moreover,
(Kunze et al. 2014) assumed that the robot’s location does
not change over time, and is always defined with respect to
a tabletop. Differently from (Kunze et al. 2014), (Deeken,
Wiemann, and Hertzberg 2018) represented directional re-
lations by comparing the 3D regions occupied by objects,
through the halfspace-based model of (Borrmann and Rank
2010). However, this model is based on the assumption that
the robot’s viewpoint is always aligned both with the global
coordinate system of the map and with the inherent orienta-
tion of the observed objects. Thus, it is not suitable to model
mobile robots making sense of the environment during navi-
gation. In real-world scenarios, as the robot moves, its view-
point changes over time and the objects observed will be ori-
ented differently. Thus, we propose to combine the robot’s
viewpoint and the orientation of the reference object within a
contextualised frame of reference. This contextualised frame
of reference allows us to define a contextualised 3D region,
or Contextualised Bounding Box, which represents the loca-
tion of the object with respect to both the robot’s viewpoint
and the frame of reference of a landmark. Crucially, the
contextualised frame of reference and Bounding Box can be
defined for any combination of robot and landmark location,
thus ensuring that this framework can scale to many real-
world robotic scenarios.

3 Proposed Framework
To define a spatial reasoning framework which satisfies the
concrete requirements of robot sensemaking, we extend the
formal theory of spatial reasoning by (Borrmann and Rank
2010). Moreover, we map the obtained spatial relations to
the commonsense predicates used to describe spatial rela-
tions between objects in English. These predicates are gath-
ered from cognitive theories (Landau and Jackendoff 1993).
By making an explicit link between formal AI theories and
informal linguistic representations, we obtain a framework
for commonsense spatial reasoning in robotic scenarios.

Notation In what follows, we model definitions as First
Order Logic (FOL) statements. We represent logic variables
through lowercase letters and constants through uppercase
letters. We also use lowercase initials to denote functions,
while uppercase initials symbolise predicates. For instance,
sReg is a function, whereas Above is a predicate. Unless
otherwise stated, free variables are universally quantified.
Finally, we use the standard notation (X, Y, Z) to denote
reference axes, while x, y, z are used to refer to the spatial
coordinates with respect to those axes.



Spatial primitives Our domain of discourse D is that of
spatial objects, i.e., physical objects, “which have spatial
extensions” (Cohn and Renz 2008). From this perspective, a
spatial object is represented in terms of the associated spatial
region. In particular, our spatial primitive is the concept of
spatial point. Thus, spatial regions are represented as sets of
spatial points, p. Let P be the set of all spatial points, then,
for each spatial object o P D, we assume the existence of a
function sReg which, given o, returns the subset of P which
includes all the points in the spatial region of o.

SpatialObjpoq ñ sRegpoq Ď P (1)
SpatialObjpoq ñ sRegpoq ‰ H (2)

In particular, our focus is not on arbitrary collections of spa-
tial points, but rather on one-piece regions (Cohn and Renz
2008), i.e., on sets of internally connected points:

SpatialObjpoq ñ ProperSRpsRegpoqq (3)

To provide a formal definition of the concept of proper spa-
tial region, we need first to establish a spatial frame of ref-
erence.

Spatial Frame of Reference A spatial object is charac-
terised not only with respect to a spatial region but also in
terms of a reference coordinate system, also known as frame
of reference. A frame of reference consists of an origin point
and of a set of directed axes intersecting at the origin, O. In
particular, modelling the 3D space requires three reference
axes X,Y, Z. Although spatial points and spatial regions
exist independently of the frame of reference, the interpreta-
tion of these spatial primitives only makes sense in the con-
text of a frame of reference. Once we have defined a ref-
erence frame, we can interpret spatial points as geometrical
points, i.e., as coordinate triples in R3. Let GP be the set of
all geometrical points in the considered space:

GP “ tp|p “ px, y, zq P R3u (4)

The identified frame of reference also has an associated
granularity, i.e., an infinitesimally small constant D ą 0 in
R, which defines the minimum distance for two geometrical
points to be considered as distinct entities. Two geometri-
cal points are then said to be adjacent iff their geometrical
distance is equal to D. To compute the distance between
two geometrical points, they have to be in the same frame of
reference. Let dpgp, gp1q be a function which returns a real
number indicating the geometric distance between points gp
and gp1. Then:

Adjpgp, gp1q ô dpgp, gp1q “ D (5)

The definition of proper spatial region then follows from the
defined notion of adjacency:

ProperSRpsrq ô @gprgp P sr ñ Connpgp, srqs (6)

Connpgp, srq ô @gp1rgp1 P sr^

gp1 ‰ gps ñ ConnPpgp, gp1q (7)

ConnPpgp1, gp2q ô Adjpgp1, gp2q_
Dgp3rAdjpgp1, gp3q ^ ConnPpgp3, gp2qs (8)

In our model, we assume that the global spatial region, GP ,
is a fully-connected set of points. Moreover, we assume
that spatial regions can be approximated through 3D boxes1.
This simplifying assumption is consistent with standard
practice in the literature (Deeken, Wiemann, and Hertzberg
2018; Borrmann and Rank 2010). Bounding boxes can have
an arbitrary orientation around the Z axis aligned with grav-
ity, but their base is always parallel to the XY plane. In
particular, we consider the minimum bounding box which
best approximates the real volume occupied by an object and
which is aligned with its natural orientation (Chiatti, Motta,
and Daga 2020). Let b be a set of geometrical points which
contains the spatial region of o:

BoundBoxpb, oq ô sRegpoq Ď b^ b Ď GP (9)

MinBoundBoxpb, oq ô BoundBoxpb, oq^

 Db1rBoundBoxpb1, oq ^ b1 Ă bs (10)

In this scenario, the environment navigated by a robot can
also be modelled as a spatial region including an arbitrary
number of objects, i.e., as a global spatial region. Conse-
quently, the outer region of a spatial region, sr, is:

outRegpsrq “ tgp|gp P GP ^ gp R sru (11)

The frame of reference of the global region, Fg , is extrin-
sic, i.e., based on a reference point which is external to both
an object and an observer. Fg remains fixed as the robot
navigates the environment. Conversely, the robot’s frame
of reference, Fr, changes as the robot moves. Thus, it is
deitic, relative to the observer’s position. Consequently,
the location of objects at each point in time can be in-
terpreted differently, based on which frame of reference
is considered. Within the formal spatial reasoning frame-
works of (Borrmann and Rank 2010; Deeken, Wiemann, and
Hertzberg 2018), all the spatial relations between objects are
defined according to the same pre-defined frame of refer-
ence, whether it is an extrinsic, deitic or intrinsic one, i.e.,
inherent to a specific object.

Differently from the latter relations, linguistic spatial
predicates implicitly refer both to (i) the location of
whichever object is considered as reference, and to (ii) the
observer’s point of view (Landau and Jackendoff 1993).
Similarly, a robot would conclude that “A is on the left of B”
based not only on the location of objects A and B within Fg ,
but also on Fr. From a different standpoint, A might appear
on the right of B, for instance, or in front of it. To model such
cases, we introduce the notion of robot’s viewpoint, Fr1 . Let
Co be the centroid of the spatial region representing object o.
Then, Fr1 is obtained by rotating Fr along Zr, by an angle
α. Specifically, α is the angle between Xr and the imag-
inary line connecting the origin of Fr with Co. Let Fo of
origin Co and axes Xo, Yo, Zo be the intrinsic frame of ref-
erence of o, i.e., the frame of reference which is aligned with
the orientation of o. Then, the contextualised frame of refer-
ence of the object, Fc, is the frame of reference of origin Co

1In the case of large regions of negligible thickness, such as floors,
walls and ceilings, the spatial region reduces to a 2D surface.



whose axes have the same orientation of the axes defining
the robot’s viewpoint, Fr1 (Figure 1).

Based on Fc, we can construct a Contextualised Bound-
ing Box (CBB), which is obtained by aligning the minimum
bounding box with Fc. Let rotZpb, θq be a function which
returns the spatial region, sr, obtained by rotating an input
bounding box along Z by an angle θ. Given a frame of ref-
erence Fc, then yawpsr, Fcq returns the angle between the
intrinsic frame of reference of sr and Fc, along Z. Then,
given π{2:

IsCBBprotZpb, θq, oq ô MinBoundBoxpb, oq^

DθrmodpyawprotZpb, θq, Fcq, π{2q “ 0^ Dθ1

rmodpyawprotZpb, θ1q, Fcq, π{2q “ 0^ θ1 ă θss (12)

Namely, to construct CBB, we select the minimum angle θ
so that the value returned by the yaw function is divisible by
π{2, i.e., the remainder of their division, mod, is zero. There
are always four possible alignments of a bounding box, b, for
which mod is zero. Thus, by selecting the minimum angle
among these four, we apply the transformation which is least
disruptive of the natural orientation of the object. Thanks to
these newly-defined spatial concepts, we can now map the
metric, topological and directional relations in (Borrmann
and Rank 2010; Deeken, Wiemann, and Hertzberg 2018) to
commonsense predicates expressed in natural language.

Metric spatial relations Given two spatial objects o1, o2
and two geometrical points gp1, gp2 where gp1 P o1 and
gp2 P o2, we define the distance between two geometrical
points as the their Euclidean distance:

dpgp1, gp2q “
a

px1 ´ x2q2 ` py1 ´ y2q2 ` pz1 ´ z2q2 (13)

Then, the distance between two spatial objects is defined as
the global minimum of the pointwise distance function, d:

rdistancepo1, o2q “ dpgp1, gp2qs ô gp1 P o1^gp2 P o2^

@gp3, gp4rgp3 P o1 ^ gp4 P o2s ñ dpgp3, gp4q ą

dpgp1, gp2q (14)

A distance threshold, T , can be then introduced, to represent
closeness between objects. That is, for a T greater than or
equal to the frame granularity D defined earlier:

IsClosepo1, o2q ô distancepo1, o2q ď T (15)

In particular, if the minimum distance between two objects
equals D, then the two objects touch:

Touchespo1, o2q ô distancepo1, o2q “ D (16)

Topological spatial relations Topological relations are
spatial relations which are invariant under a topological iso-
morphism, i.e., a function f : X Ñ Y which preserves
neighbourhood relationships while mapping X to Y . Al-
though several different qualitative representations of topo-
logical relations have been proposed (Cohn and Renz 2008),
here we focus on a subset of topological relations, namely on
the intersection and containment relations. As shown in the
remainder of this Section, this minimal subset of relations,
combined with metric and directional relations, is sufficient

to cover all the commonsense spatial relations required in
the scenario of interest. First, based on our prior definitions,
two spatial regions, sr, sr1 intersect iff they have at least one
geometrical point in common:

Intpsr, sr1q ô Dgprgp P sr ^ gp P sr1s (17)

We also define the spatial region representing the intersec-
tion between two objects (i.e., the intersection between the
associated spatial regions) as follows:

interpo1, o2q “ tgp|gp P sRegpo1q ^ gp P sRegpo2qu (18)

Then, a special case of the intersection relation is the case
where one spatial region completely contains the other:

ComplContpsr, sr1q ô @gprgp P sr1 ñ gp P srs (19)

Semantically, o contains o1 completely iff all the geometrical
points in the spatial region of o1 are also members of the
spatial region of o.

Directional spatial relations Differently from metric and
topological relations, directional spatial relations are inter-
preted differently based on the considered frame of refer-
ence. (Borrmann and Rank 2010) have proposed a qualita-
tive representation for directional relations where the region
outside a 3D bounding box is partitioned into six halfspaces,
i.e., one halfspace for each semi-axis of X,Y, Z. Because
we have defined a global spatial region containing all geo-
metrical points in the robot’s environment, these halfspaces
are also proper spatial regions, which can be approximated
through 3D bounding boxes. In particular, as in (Deeken,
Wiemann, and Hertzberg 2018), they can be modelled as 3D
extrusions, obtained by multiplying the extent of the object
spatial region by a scaling factor s P R.

The coordinates of all geometrical points in the minimum
bounding box are bound to a minimum and maximum value,
e.g., xmin and xmax. Let X`o and X´o be the positive and
negative semi-axes of Xo in Fo. Then, we define a function,
hs, which returns the halfspace of an input bounding box,
given semi-axis, X`o , and frame of reference, Fo:

MinBoundBoxpmb1, o1q ñ hspmb1, X`o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmax ď x ď xmax ` xmax ¨ s,

ymin ď y ď ymax,

zmin ď z ď zmaxu

(20)

Additional halfspaces can be similarly derived for the other
semi-axes in Fo, as further documented in the supplemen-
tary materials. Once these halfspaces have been defined, one
can test whether a second object o2 lies within any of the
halfspaces of o1. In particular, (Borrmann and Rank 2010)
differentiate between “relaxed” ( r) and “strict” ( s) spatial
operators, based on whether o2 intersects or is completely
contained in the halfspaces of o1. In the following, we rep-
resent predicates symbolising cardinal directions East, West,
North, South, Above and Below through their capital initial.



Figure 1: The robot’s viewpoint, Fr1 , consists of an origin and three axes Xr1 (in red), Yr1 (in green) and Zr1 (in blue). Fr1 may not coincide
with the frame of reference characterising the global map, Fg , nor with the intrinsic frame of reference of a certain object, Fo. As shown
on the left-hand side of the Figure, a spatial object is first modelled as the minimum 3D box bounding the object. Then, Fr1 is translated
to the object’s centroid to define a contextualised frame of reference Fc. Moreover, a Contextualised Bounding Box (highlighted in blue) is
generated, i.e., the bounding box which requires the minimum rotation along the Z axis to align the minimum bounding box with Fc.

Given a Fo which coincides with Fg , the strict and relaxed
definitions of the relation East(o2,o1) are:

E spo2, o1,Foq ô MinBoundBoxpmb1, o1q^

ComplContphspmb1, X`o , Foq, sRegpo2qq
(21)

E rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

Intphspmb1, X`o , Foq, sRegpo2qq (22)

Based on our prior definitions, we can model directional re-
lations with respect to a given Fo as follows:

W rpo2, o1, Foq ô IntpsRegpo2q, hspmb1, X´o , Foqq (23)

N rpo2, o1, Foq ô IntpsRegpo2q, hspmb1, Y `o , Foqq (24)

S rpo2, o1, Foq ô IntpsRegpo2q, hspmb1, Y ´o , Foqq (25)

A rpo2, o1, Foq ô IntpsRegpo2q, hspmb1, Z`o , Foqq (26)

B rpo2, o1, Foq ô IntpsRegpo2q, hspmb1, Z´o , Foqq (27)

For brevity, we have omitted the predicate
MinBoundBoxpmb1, o1q from axioms 23-27. The full
definition is in the supplementary materials.

(Borrmann and Rank 2010) defined the aforementioned
relations under the assumption that Fo is always aligned
with Fg . However, this assumption does not hold in the case
of mobile robot sensemaking. Indeed, the frame of refer-
ence of the robot, Fr is mobile, i.e., its origin and orientation
change over time. Moreover, the natural orientation of ob-
jects may not be aligned with Fg . Thus, to produce a repre-
sentational model which suits the case of robot sensemaking,
we need to map axioms 22-27 to the contextualised frame of
reference, Fc, defined earlier. In a typical robotic setting,
the robot always faces towards X`r , and Z`r is directed up-
wards, i.e., opposite to the direction of gravity. Then, the
orientation of Yr is given by applying the right hand rule
(Figure 1). Based on these premises, all Z axes always share
the same orientation. Namely, the top and bottom halfspaces
of an object do not change with the robot’s reference frame
(Figures 1,2). Therefore, the A r and B r predicates based

on the minimum oriented bounding box of an object w.r.t.
a given Fo can be directly reused to define the Above and
Below relations w.r.t. Fc:

Abovepo2, o1, Fcq ô A rpo2, o1, Foq (28)
Belowpo2, o1, Fcq ô B rpo2, o1, Foq (29)

Nonetheless, to model relations such as RightOf or LeftOf,
we need to account for the robot’s viewpoint. Thus, we ap-
ply the halfspace-based model to the Contextualised Bound-
ing Box we have defined earlier (see Figure 2). By defini-
tion, CBB is aligned with the contextualised frame of refer-
ence, Fc, so the front halfspace of CBB, for instance, can be
defined w.r.t. a given Fc as follows:

IsCBBpcbb1, o1q ñ hspcbb1, X´c , Fcq “

tgp P outRegpcbb1q|gp “ px, y, zq w.r.t.Fc,

x1min ´ x
1
min ¨ s ď x ď x1min,

y1min ď y ď y1max,

z1min ď z ď z1maxu

(30)

Capitalising on these spatial constructs, we can define the
remaining directional relations:

RightOfpo2, o1, Fcq ô Intpsr2, hspcbb1, Y ´c , Fcqq (31)

LeftOfpo2, o1, Fcq ô Intpsr2, hspcbb1, Y `c , Fcqq (32)

InFrontOfpo2, o1, Fcq ô Intpsr2, hspcbb1, X´c , Fcqq (33)

Behindpo2, o1, Fcq ô Intpsr2, hspcbb1, X`c , Fcqq (34)

For brevity, in axioms 31-34 we have omitted the predicate
IsCBBpcbb1, o1q, which is always valid. The full definition
is given in the supplementary materials. Next, we need to
specify how the qualitative spatial relations we have identi-
fied align with commonsense spatial predicates.

Commonsense spatial relations In English, objects are
represented by nouns while the spatial relationships between
objects are mainly represented through prepositions - e.g.,



Figure 2: Halfspaces are generated by extruding the 3D bounding boxes along the axis direction in the frame of reference. Specifically, the top
and bottom halfspaces, i.e., extruded along the Z axis, are derived from the minimum oriented bounding box (left-hand side of the Figure).
The left, right, front and bottom halfspaces are instead extruded from the Contextualised Bounding Box (right-hand side of the Figure).

on, next to, behind (Landau and Jackendoff 1993). Spatial
relations are also implied by using certain verbs (e.g., person
wears shirt). However, almost invariably, these verbs can be
reduced to a simplified form, followed by a preposition (e.g.,
person has shirt on). Hence, the canonical structure of a spa-
tial sentence consists of three elements: (i) a reference object
and (ii) a figure object, both expressed as noun phrases, as
well as (iii) a spatial preposition. The reference object and
the preposition, together, define the spatial region occupied
by the figure object.
As pointed out in (Landau and Jackendoff 1993), a set of
reference axes is needed to differentiate the front, back, top,
bottom and sides of an object. Specifically, the object’s
top and bottom are defined as “the regions at the ends of
whichever axis is vertical in the object’s normal orientation”
(Landau and Jackendoff 1993). Thus, they are conceptu-
ally equivalent to the notion of top and bottom halfspaces
we defined for the minimum oriented bounding box. More-
over, the object front is defined as the region at the end of
the object’s horizontal axis which also faces the observer.
Conversely, the object back region is located opposite to the
observer along the same axis. Finally, the region at the end
of any other horizontal axis can be called a side. Thus, the
four halfspaces we have defined based on the CBB cover
these concepts.
Consequently, the directional relations defined at statements
28-34 are fit to model the directional predicates in (Landau
and Jackendoff 1993). Moreover, the LeftOf and RightOf

relations can be combined so that, given Fc:

Besidepo2, o1, Fcq ôRightOfpo2, o1, Fcq_

LeftOfpo2, o1, Fcq
(35)

An interesting case is that of the “on” preposition. One of
the senses of “on” is semantically related to “above”. How-
ever, while “above” typically implies absence of contact be-
tween the two objects, “on” strongly favours a contact read-
ing (Landau and Jackendoff 1993). Formally, we make this
distinction by defining:

OnTopOfpo2, o1, Fcq ôAbovepo2, o1, Fcq^

Touchespo2, o1q
(36)

Nonetheless, the “on” preposition can also be used to denote
that the figure object is supported by the reference object.
For instance, we say that a “clock is on the wall” although
the two objects overlap horizontally. The phrase “clock on
wall” also implies that the wall is adequately stable to sup-
port the clock. Indeed, if two objects differ in terms of
size and mobility, we typically prefer to consider the larger
and more stable object as reference (Landau and Jackendoff
1993). To disambiguate these additional uses of “on”, we
define, for a given Fc:

LeansOnpo2, o1, Fcq ô Touchespo2, o1q^
 Abovepo2, o1, Fcq ^  Belowpo2, o1, Fcq^

Do3rTouchespo2, o3q ^ Belowpo3, o2, Fcqs

(37)



Touchespo2, o1q ^  Abovepo2, o1, Fcq^

 Do3Touchespo3, o2q ñ AffixedOnpo2, o1, Fcq (38)
Namely, whenever o2 is supported by a reference object o1
along the horizontal direction, it is typically said to be “lean-
ing against” o1: e.g., a ladder leaning against a wall. Further-
more, if the reference object o1 provides the only support
surface for o2, o2 is typically said to be AffixedOn o1: e.g., a
ladder which is affixed on the wall, above ground. Nonethe-
less, there may be cases where an object, o2, is physically
affixed to a surface, o1, even though o1 is not the only sur-
face in contact with o2: e.g., a ladder affixed at ground level.
Hence, we used a single logic implication in Statement 37.

Similar considerations apply for the spatial preposition
“in”, which is also polysemous. First, “in” is generally used
to imply that one object is “inside” another, or, based on our
prior topological definitions, that one object is completely
contained in the other (axiom 19). However, “in” is also
used in cases where two objects only partially compenetrate
each other. For instance, we would say that “a cat is in the
box” even when the cat’s tail is peeping from the box. To de-
fine this notion of partial containment we need first to define
a function, adjSRCard, which, given two spatial regions, sr
and sr’, returns the cardinality of the set of points in sr’ that
are adjacent to points in sr:

adjSRCardpsr, sr1q “ |tgp1|gp1 P outRegpsrq^gp1 P sr1^

Dgprgp P sr ^ Adjpgp, gp1qsu| (39)
Hence, we can now define partial containment as follows:

PartInpo1, o2q ô sr “ interpsRegpo1q, sRegpo2qq^
adjSRCardpsr, sRegpo1qq ă adjSRCardpsr, sRegpo2qqs

(40)
Namely, o1 is partially contained in o2 iff the number of
points in o1 that are adjacent to the intersection region of o1
and o2 is strictly smaller than the number of points in o2 that
are adjacent to the same intersection region.

Lastly, an object is said to be “near” another object if it is
located in a region “extending up to some critical distance”
(Landau and Jackendoff 1993). This notion corresponds ex-
actly to our definition of predicate IsClose (axiom 15).

4 Framework Applicability
In this Section, we assess the applicability of the proposed
logic framework in concrete robotic scenarios. First, we il-
lustrate how the raw sensor data can be opportunely pro-
cessed to populate a spatial database (Section 4.1). Then, in
Section 4.2, we evaluate the extent to which state-of-the-art
GIS operators can cover the proposed set of Qualitative Spa-
tial Relations. Furthermore, we show that, once a set of basic
spatial concepts has been derived through GIS operators, our
framework provides a method to combine these basic spatial
concepts to model the commonsense spatial predicates of
(Landau and Jackendoff 1993).

4.1 Populating the Spatial Database
Figure 3a shows an example of RGB-Depth (RGB-D) data
collected through HanS’ Orbbec Astra Pro monocular cam-
era. At each time frame, t, the distance between the robot’s

pose and the surfaces reached by the laser in the depth sen-
sor is measured. These data are also known as depth im-
ages, and can be converted to collections of 3D geometri-
cal points in the considered frame of reference, i.e., Point-
Clouds. As in (Chiatti et al. 2021), RGB images are au-
tonomously classified through Machine Learning (ML), i.e.,
based on the multi-branch Network of (Zeng et al. 2018).
We then project the object regions annotated on RGB images
on the PointCloud representing the observed scene, to obtain
a segmented 3D region for each annotated object. In addi-
tion to the annotated object regions, we extract the planar
surfaces representing the wall and floor areas. Specifically,
we use the PCL library (Rusu and Cousins 2011) to repro-
duce the RANSAC planar segmentation algorithm. Then,
we differentiate walls from floors based on the orientation
of the plane normal. Because the robot pose at each t is
known, the depth values within each 3D object region can
be converted to coordinate triples in the global frame of ref-
erence, Fg . In sum, we have produced a semantic map of the
robot’s environment.

Consistently with (Deeken, Wiemann, and Hertzberg
2018), we store the object regions and labels in the semantic
map within a spatial database, implemented in PostgreSQL2.
By linking these data to a spatial database, we can capitalise
on the PostGIS engine3, which provides a series of query
operators for spatial reasoning over PostgreSQL databases.
In particular, we rely on the SFCGAL backend4, which ex-
tends PostGIS by supporting more advanced 3D operations.
Objects are stored in the PostGIS database using a mini-
mum oriented polyhedron derived by applying the convex
hull algorithm on the segmented PointCloud. Planar sur-
faces are instead stored as 2D polygons. To populate the
spatial database, for each 3D solid or 2D polygon, a new
database record is added, which includes: (i) a unique iden-
tifier, obtained by concatenating the data collection times-
tamp with an incremental digit; (ii) the robot’s heading and
x, y, z coordinates w.r.t. Fg; (iii) the top-5 object labels and
related confidence scores, as predicted through ML; as well
as (iv) a set of Bounding Box representations of the 3D solid,
as further detailed in the next Section.

4.2 Coverage Study
The mapping of spatial concepts in our framework to GIS
operators is summarised in Table 1a. In the following, we
also explain the operational steps applied to obtain the out-
put of each row in Table 1a.

Minimum Oriented Bounding Box To compute the min-
imum oriented bounding box, we input the 2D projection of
the solid on the XY plane to the ST OrientedEnvelope op-
erator. Second, the ST ZMin and ST ZMax functions can be
used to find the minimum and maximum coordinate of the
3D solid with respect to the vertical axis. The absolute dif-
ference between these two coordinates yields the height of
the target bounding box, h. Then, the ST Extrude operator
can be used to extrude the 2D envelope along Z by h.
2https://www.postgresql.org/
3https://postgis.net/
4http://www.sfcgal.org/

https://www.postgresql.org/


Figure 3: Example of operational workflow: (a) the PointCloud representing the observed scene is first segmented and annotated with object
categories. Then, (b) the minimum oriented bounding boxes and CBBs (in blue) are constructed. Lastly, (c) a set of QSR in figure-reference
form is derived. In Figures 3b, 3c we show a subset of the bounding boxes and QSR representing the scene, for readability.

Contextualised Bounding Box The Contextualised
Bounding Box, CBB, is obtained by rotating the minimum
oriented bounding box by an angle θ, to align it with Fc

(axiom 12). This operation can be achieved through the
ST Rotate operator. ST Rotate requires, as input, a geom-
etry, a rotation origin and an angle. We use ST Angle to
compute the angle between the heading of the robot and the
bounding box, i.e., θ. To derive the rotation origin, we can
exploit ST Centroid. Since ST Centroid is a 2D operator, it
is applied to the minimum oriented 2D rectangle returned
by ST OrientedEnvelope. Lastly, the transformation is
applied to the line passing through the rotation origin and
parallel to the Z axis.

Object Halfspaces To derive the six object halfspaces, we
can rely on the ST Extrude operator. As emphasised in Table
1a, we generate the top and bottom halfspaces by applying
ST Extrude to the minimum oriented bounding box. How-
ever, to account for the orientation of both the object and
the robot, the remaining four halfspaces are generated by
extruding the Contextualised Bounding Box.

Identifying the reference objects Commonsense spatial
relations are expressed with respect to a reference object and
are asymmetric (Landau and Jackendoff 1993). For instance,
we would say that a plant is on the floor (figure-reference
form), but we would never say that the floor is under a plant
(reference-figure form). Therefore, to extract only the QSR
which are in figure-reference form, we need first to identify
the set of reference objects in each scene. Reference objects
are usually the largest and most stable among the observed
objects (Landau and Jackendoff 1993). Hence, by defini-
tion, we consider as reference the objects of large area and
negligible thickness, which we have modelled as 2D planes,
i.e., walls and floors. Moreover, the ST Volume operator pro-

vides a way to measure the size of the 3D bounding boxes.
To compute only QSR which are in figure-reference form,
we sort objects by volume in descending order. Then, we
only compute the QSR between one object and the nearby
objects which are smaller than it, if any is found. As a re-
sult, in the example depicted in Figure 3, QSR such as wall
behind fire extinguisher1 or floor under fire extinguisher2
would not be extracted. Thus, this design choice also re-
duces the computational load of extracting QSR for all pair-
wise combinations of objects.

Metric relations To identify the set of objects which lie
nearby a reference object, we can use the ST 3DDWithin op-
erator. This operator returns true if the minimum 3D Eu-
clidean distance between two objects is within a specified
threshold. Thus, it is equivalent to our definition of object
closeness (axiom 15). Hence, for all object pairs o1 and o for
which ST 3DDWithin returns true for a specified T ą 0, the
relation IsClose(o, o1) also holds. A special case is that of
the Touches(o, o1) relation, where T “ 0.

Topological relations The intersection relation we
have defined at axiom 17 is directly covered by the
ST 3DIntersects operator. Similarly, ST 3DIntersection, is
equivalent to the aforementioned inter function (axiom 18).
Neither PostGIS nor SFCGAL support 3D containment
tests. To circumvent this limitation, we derive containment
relations by comparing the volume of objects with the
volume of their intersection region, through ST Volume.
Namely, if the volume of the intersection region equals the
volume of the smaller object, e.g., o1, then ComplCont(o, o1).

Directional relations To derive directional QSR, the
ST 3DIntersects operator can be applied to the object half-
spaces constructed earlier. For instance, in Figure 3c, fire



Input Geometry/ies GIS operators applied Output
Convex Hull ST OrientedEnvelope, Min Oriented BBox

ST ZMin, ST ZMax,
ST Extrude

Min Oriented BBox, ST Rotate, CBB
Robot heading ST Angle, ST Centroid
Min Oriented BBox, s ST Extrude Top/Bottom Halfspaces
CBB, s ST Extrude L/R/Front/Back Halfspaces
Min Oriented BBoxes ST Volume Reference object set
Min Oriented BBoxes ST 3DDWithin IsClose, Touches
Min Oriented BBoxes ST 3DIntersects Intersects (Int)
Min Oriented BBoxes ST 3DIntersection inter
Min Oriented BBoxes ST 3DIntersection, CompletelyContains

ST Volume (ComplCont)
Min Oriented BBox ST 3DIntersects Left/RightOf
Halfspaces Above, Below

InFrontOf, Behind
Min Oriented BBoxes ST Scale, ST Volume adjSRCard

ST Intersection

(a)

QSR Follows from
Beside RightOf, LeftOf
OnTopOf Touches, Above
LeansOn Touches, Above

Below
AffixedOn Touches, Above
Inside ComplCont
PartIn inter, adjSRCard
Near isClose

(b)

Table 1: (a) Coverage of spatial notions through PostGIS operators. (b) The basic spatial relations covered by PostGIS are combined to derive
more complex QSR.

extinguisher2 is on the left of the radiator, because it in-
tersects the left halfspace of the radiator. Differently from
(Deeken, Wiemann, and Hertzberg 2018), however, the left
halfspace was here defined on a Contextualised Bounding
Box, so that the robot’s viewpoint is also accounted for.

Commonsense spatial relations As shown in Table 1a,
PostGIS ensures a full coverage of the basic building blocks
of our spatial framework. Then, the commonsense relations
defined in Section 3 can be seen as a combination of these
building blocks (Table 1b). For instance, having mapped the
LeftOf and RightOf relation to GIS operators (Table 1a) we
can also conclude whether o, o1 are Beside one another (Ta-
ble 1b). In the case of PartIn, we first apply ST Intersection
to obtain the intersection region of o, o1, i.e., interpo, o1q.
Then, to approximate the frontier of points which are adja-
cent to the intersection region, we scale interpo, o1q by a D,
via ST Scale. In other words, we obtain a region which is
infinitesimally larger than the intersection region. Thus, we
can use this region to test, again through ST Intersection,
which sets of points overlap o and o1. Specifically, since
we are dealing with geometric regions, the cardinality of
each point set (axiom 39) is given by the region volume,
i.e., via ST Volume. In sum, the aforementioned operators,
also listed in Table 1, cover the logic functions needed to
evaluate PartInpo, o1q.

Crucially, the introduction of commonsense QSR allows
us to disambiguate polysemous spatial prepositions, such as
“in” or “on”. For instance, in Figure 3, both fire extinguish-
ers are generically “on the wall”. However, fire extinguisher
1, is affixed on the wall, whereas fire extinguisher 2, is also
supported by the floor and thus leans on the wall, i.e., it
may or may not be affixed on the wall. Thus, compared

to the “on” preposition, the introduced QSR more precisely
express the intuitive spatial and physics relations at play.

5 Conclusion and Future Work

In this paper, we have identified a framework for common-
sense spatial reasoning which satisfies the concrete require-
ments of robot sensemaking in real-world scenarios. Dif-
ferently from prior approaches to qualitative spatial reason-
ing in robotics, this framework is robust to variations in the
robot’s viewpoint and object orientation, thus ensuring scal-
ability to many application scenarios. As highlighted by
our coverage study, the proposed framework can be fully
implemented by capitalising on state-of-the-art GIS tech-
nologies. Moreover, the proposed framework contributes a
cognitively-inspired conceptual layer on top of these basic
spatial operators, to model commonsense spatial predicates.
The resulting linguistic predicates facilitate Human-Robot
Interaction, as well as the integration of background spatial
knowledge from external resources. As such, the proposed
framework contributes to the broader objective of develop-
ing Visually Intelligent Agents (VIA), which can reliably as-
sist us with our daily tasks.

Our future efforts will be focused on evaluating the per-
formance impacts of augmenting ML-based object recogni-
tion methods with the proposed commonsense spatial rea-
soner. In this context, we will also assess the effects of com-
bining commonsense spatial reasoning with the other types
of reasoners contributing to the Visual Intelligence of a robot
(Chiatti, Motta, and Daga 2020): e.g., size-based (Chiatti et
al. 2021), motion-based and others.



A Supplementary Materials
A.1 Halfspace Definitions
The hs function we introduced at axiom 20 of the paper can
be similarly applied to the other semi-axes in a given Fo.
Specifically, given an input bounding box, and frame of ref-
erence, Fo:

MinBoundBoxpmb1, o1q ñ hspmb1, X´o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmin ´ xmin ¨ s ď x ď xmin,

ymin ď y ď ymax,

zmin ď z ď zmaxu

(41)

MinBoundBoxpmb1, o1q ñ hspmb1, Y `o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmin ď x ď xmax,

ymax ď y ď ymax ` ymax ¨ s,

zmin ď z ď zmaxu

(42)

MinBoundBoxpmb1, o1q ñ hspmb1, Y ´o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmin ď x ď xmax,

ymin ´ ymin ¨ s ď y ď ymin,

zmin ď z ď zmaxu

(43)

MinBoundBoxpmb1, o1q ñ hspmb1, Z`o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmin ď x ď xmax,

ymin ď y ď ymax,

zmax ď z ď zmax ` zmax ¨ su
(44)

MinBoundBoxpmb1, o1q ñ hspmb1, Z´o , Foq “

tgp P outRegpmb1q|gp “ px, y, zq w.r.t Fo,

xmin ď x ď xmax,

ymin ď y ď ymax,

zmin ´ zmin ¨ s ď z ď zminu

(45)

Similarly, to complete axiom 30 in the main paper, the
back, left and right halfspaces are defined as follows, given
Fc:

IsCBBpcbb1, o1q ñ hspcbb1, X`c , Fcq “

tgp P outRegpcbb1q|gp “ px, y, zq w.r.t.Fc,

x1max ď x ď x1max ` x
1
max ¨ s,

y1min ď y ď y1max,

z1min ď z ď z1maxu

(46)

IsCBBpcbb1, o1q ñ hspcbb1, Y `c , Fcq “

tgp P outRegpcbb1q|gp “ px, y, zq w.r.t.Fc,

x1min ď x ď x1max,

y1max ď y ď y1max ` y
1
max ¨ s,

z1min ď z ď z1maxu

(47)

IsCBBpcbb1, o1q ñ hspcbb1, Y ´c , Fcq “

tgp P outRegpcbb1q|gp “ px, y, zq w.r.t.Fc,

x1min ď x ď x1max,

y1min ´ y
1
min ¨ s ď y ď y1min,

z1min ď z ď z1maxu

(48)

A.2 Directional Relations
The extended definitions of axioms 23-27 in the main paper
for a given Fo are:

W rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

IntpsRegpo2q, hspmb1, X´o , Foqq (49)

N rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

IntpsRegpo2q, hspmb1, Y `o , Foqq (50)

S rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

IntpsRegpo2q, hspmb1, Y ´o , Foqq (51)

A rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

IntpsRegpo2q, hspmb1, Z`o , Foqq (52)

B rpo2, o1, Foq ô MinBoundBoxpmb1, o1q^

IntpsRegpo2q, hspmb1, Z´o , Foqq (53)
Moreover, the full definitions of axioms 31-34 in the main

paper, given Fc, are:

RightOfpo2, o1, Fcq ô IsCBBpcbb1, o1q^

Intpsr2, hspcbb1, Y ´c , Fcqq (54)

LeftOfpo2, o1, Fcq ô IsCBBpcbb1, o1q^

Intpsr2, hspcbb1, Y `c , Fcqq (55)

InFrontOfpo2, o1, Fcq ô IsCBBpcbb1, o1q^

Intpsr2, hspcbb1, X´c , Fcqq (56)

Behindpo2, o1, Fcq ô IsCBBpcbb1, o1q^

Intpsr2, hspcbb1, X`c , Fcqq (57)
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